
2 INTELLIGENT AGENTS

In which we discuss the nature of agents, perfect or otherwise, the diversity of
environments, and the resulting menagerie of agent types.

Chapter 1 identified the concept of rational agents as central to our approach to arti-
ficial intelligence. In this chapter, we make this notion more concrete. We will see that the
concept of rationality can be applied to a wide variety of agents operating in any imaginable
environment. Our plan in this book is to use this concept to develop a small set of design
principles for building successful agents—systems that can reasonably be called intelligent.

We will begin by examining agents, environments, and the coupling between them. The
observation that some agents behave better than others leads naturally to the idea of a rational
agent—one that behaves as well as possible. How well an agent can behave depends on
the nature of the environment; some environments are more difficult than others. We give a
crude categorization of environments and show how properties of an environment influence
the design of suitable agents for that environment. We describe a number of basic “skeleton”
agent designs, which will be fleshed out in the rest of the book.

2.1 AGENTS AND ENVIRONMENTS

An agent is anything that can be viewed as perceiving its environment through sensors andENVIRONMENT

SENSOR acting upon that environment through actuators. This simple idea is illustrated in Figure 2.1.
ACTUATOR A human agent has eyes, ears, and other organs for sensors and hands, legs, mouth, and other

body parts for actuators. A robotic agent might have cameras and infrared range finders for
sensors and various motors for actuators. A software agent receives keystrokes, file contents,
and network packets as sensory inputs and acts on the environment by displaying on the
screen, writing files, and sending network packets. We will make the general assumption that
every agent can perceive its own actions (but not always the effects).

We use the term percept to refer to the agent’s perceptual inputs at any given instant. AnPERCEPT

agent’s percept sequence is the complete history of everything the agent has ever perceived.PERCEPT SEQUENCE

In general, an agent’s choice of action at any given instant can depend on the entire percept
sequence observed to date. If we can specify the agent’s choice of action for every possible

32

Section 2.1. Agents and Environments 33

Agent Sensors

Actuators

E
nvironm

ent

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

percept sequence, then we have said more or less everything there is to say about the agent.
Mathematically speaking, we say that an agent’s behavior is described by the agent functionAGENT FUNCTION

that maps any given percept sequence to an action.
We can imagine tabulating the agent function that describes any given agent; for most

agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
on the agent architecture.

To illustrate these ideas, we will use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens; it’s
also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck, otherwise move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3. A simple agent program for this agent function is given later in the chapter, in
Figure 2.8.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we’ll
see later in this chapter that it can be very intelligent.

34 Chapter 2. Intelligent Agents

A B

Figure 2.2 A vacuum-cleaner world with just two locations.

Percept sequence Action

[A,Clean] Right

[A,Dirty] Suck

[B,Clean] Left

[B,Dirty] Suck

[A,Clean], [A,Clean] Right

[A,Clean], [A,Dirty] Suck
...

...
[A,Clean], [A,Clean], [A,Clean] Right

[A,Clean], [A,Clean], [A,Dirty] Suck
...

...

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world
shown in Figure 2.2.

is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

Before closing this section, we will remark that the notion of an agent is meant to be a
tool for analyzing systems, not an absolute characterization that divides the world into agents
and non-agents. One could view a hand-held calculator as an agent that chooses the action of
displaying “4” when given the percept sequence “2 + 2 =,” but such an analysis would hardly
aid our understanding of the calculator.

2.2 GOOD BEHAVIOR: THE CONCEPT OF RATIONALITY

A rational agent is one that does the right thing—conceptually speaking, every entry inRATIONAL AGENT

the table for the agent function is filled out correctly. Obviously, doing the right thing is
better than doing the wrong thing, but what does it mean to do the right thing? As a first
approximation, we will say that the right action is the one that will cause the agent to be

Section 2.2. Good Behavior: The Concept of Rationality 35

most successful. Therefore, we will need some way to measure success. Together with the
description of the environment and the sensors and actuators of the agent, this will provide a
complete specification of the task facing the agent. Given this, we can define more precisely
what it means to be rational.

Performance measures

A performance measure embodies the criterion for success of an agent’s behavior. WhenPERFORMANCE
MEASURE

an agent is plunked down in an environment, it generates a sequence of actions according
to the percepts it receives. This sequence of actions causes the environment to go through a
sequence of states. If the sequence is desirable, then the agent has performed well. Obviously,
there is not one fixed measure suitable for all agents. We could ask the agent for a subjective
opinion of how happy it is with its own performance, but some agents would be unable
to answer, and others would delude themselves.2 Therefore, we will insist on an objective
performance measure, typically one imposed by the designer who is constructing the agent.

Consider the vacuum-cleaner agent from the preceding section. We might propose to
measure performance by the amount of dirt cleaned up in a single eight-hour shift. With a
rational agent, of course, what you ask for is what you get. A rational agent can maximize this
performance measure by cleaning up the dirt, then dumping it all on the floor, then cleaning
it up again, and so on. A more suitable performance measure would reward the agent for
having a clean floor. For example, one point could be awarded for each clean square at each
time step (perhaps with a penalty for electricity consumed and noise generated). As a general
rule, it is better to design performance measures according to what one actually wants in the
environment, rather than according to how one thinks the agent should behave.

The selection of a performance measure is not always easy. For example, the notion
of “clean floor” in the preceding paragraph is based on average cleanliness over time. Yet
the same average cleanliness can be achieved by two different agents, one of which does a
mediocre job all the time while the other cleans energetically but takes long breaks. Which
is preferable might seem to be a fine point of janitorial science, but in fact it is a deep philo-
sophical question with far-reaching implications. Which is better—a reckless life of highs
and lows, or a safe but humdrum existence? Which is better—an economy where everyone
lives in moderate poverty, or one in which some live in plenty while others are very poor? We
will leave these questions as an exercise for the diligent reader.

Rationality

What is rational at any given time depends on four things:

• The performance measure that defines the criterion of success.

• The agent’s prior knowledge of the environment.

• The actions that the agent can perform.

• The agent’s percept sequence to date.

2 Human agents in particular are notorious for “sour grapes”—believing they did not really want something after
not getting it, as in, “Oh well, never mind, I didn’t want that stupid Nobel prize anyway.”

36 Chapter 2. Intelligent Agents

This leads to a definition of a rational agent:DEFINITION OF A
RATIONAL AGENT

For each possible percept sequence, a rational agent should select an action that is ex-
pected to maximize its performance measure, given the evidence provided by the percept
sequence and whatever built-in knowledge the agent has.

Consider the simple vacuum-cleaner agent that cleans a square if it is dirty and moves to the
other square if not; this is the agent function tabulated in Figure 2.3. Is this a rational agent?
That depends! First, we need to say what the performance measure is, what is known about
the environment, and what sensors and actuators the agent has. Let us assume the following:

• The performance measure awards one point for each clean square at each time step,
over a “lifetime” of 1000 time steps.
• The “geography” of the environment is known a priori (Figure 2.2) but the dirt distri-

bution and the initial location of the agent are not. Clean squares stay clean and sucking
cleans the current square. The Left and Right actions move the agent left and right
except when this would take the agent outside the environment, in which case the agent
remains where it is.

• The only available actions are Left , Right , Suck , and NoOp (do nothing).
• The agent correctly perceives its location and whether that location contains dirt.

We claim that under these circumstances the agent is indeed rational; its expected perfor-
mance is at least as high as any other agent’s. Exercise 2.4 asks you to prove this.

One can see easily that the same agent would be irrational under different circum-
stances. For example, once all the dirt is cleaned up it will oscillate needlessly back and
forth; if the performance measure includes a penalty of one point for each movement left or
right, the agent will fare poorly. A better agent for this case would do nothing once it is sure
that all the squares are clean. If clean squares can become dirty again, the agent should occa-
sionally check and re-clean them if needed. If the geography of the environment is unknown,
the agent will need to explore it rather than stick to squares A and B. Exercise 2.4 asks you
to design agents for these cases.

Omniscience, learning, and autonomy

We need to be careful to distinguish between rationality and omniscience. An omniscientOMNISCIENCE

agent knows the actual outcome of its actions and can act accordingly; but omniscience is
impossible in reality. Consider the following example: I am walking along the Champs
Elysées one day and I see an old friend across the street. There is no traffic nearby and I’m
not otherwise engaged, so, being rational, I start to cross the street. Meanwhile, at 33,000
feet, a cargo door falls off a passing airliner,3 and before I make it to the other side of the
street I am flattened. Was I irrational to cross the street? It is unlikely that my obituary would
read “Idiot attempts to cross street.”

This example shows that rationality is not the same as perfection. Rationality max-
imizes expected performance, while perfection maximizes actual performance. Retreating
from a requirement of perfection is not just a question of being fair to agents. The point is

3 See N. Henderson, “New door latches urged for Boeing 747 jumbo jets,” Washington Post, August 24, 1989.

Section 2.2. Good Behavior: The Concept of Rationality 37

that if we expect an agent to do what turns out to be the best action after the fact, it will be
impossible to design an agent to fulfill this specification—unless we improve the performance
of crystal balls or time machines.

Our definition of rationality does not require omniscience, then, because the rational
choice depends only on the percept sequence to date. We must also ensure that we haven’t
inadvertently allowed the agent to engage in decidedly underintelligent activities. For exam-
ple, if an agent does not look both ways before crossing a busy road, then its percept sequence
will not tell it that there is a large truck approaching at high speed. Does our definition of
rationality say that it’s now OK to cross the road? Far from it! First, it would not be rational
to cross the road given this uninformative percept sequence: the risk of accident from cross-
ing without looking is too great. Second, a rational agent should choose the “looking” action
before stepping into the street, because looking helps maximize the expected performance.
Doing actions in order to modify future percepts—sometimes called information gather-
ing—is an important part of rationality and is covered in depth in Chapter 16. A secondINFORMATION

GATHERING

example of information gathering is provided by the exploration that must be undertaken byEXPLORATION

a vacuum-cleaning agent in an initially unknown environment.
Our definition requires a rational agent not only to gather information, but also to learnLEARNING

as much as possible from what it perceives. The agent’s initial configuration could reflect
some prior knowledge of the environment, but as the agent gains experience this may be
modified and augmented. There are extreme cases in which the environment is completely
known a priori. In such cases, the agent need not perceive or learn; it simply acts correctly.
Of course, such agents are very fragile. Consider the lowly dung beetle. After digging its nest
and laying its eggs, it fetches a ball of dung from a nearby heap to plug the entrance. If the ball
of dung is removed from its grasp en route, the beetle continues on and pantomimes plugging
the nest with the nonexistent dung ball, never noticing that it is missing. Evolution has built an
assumption into the beetle’s behavior, and when it is violated, unsuccessful behavior results.
Slightly more intelligent is the sphex wasp. The female sphex will dig a burrow, go out and
sting a caterpillar and drag it to the burrow, enter the burrow again to check all is well, drag
the caterpillar inside, and lay its eggs. The caterpillar serves as a food source when the eggs
hatch. So far so good, but if a entomologist moves the caterpillar a few inches away while the
sphex is doing the check, it will revert back to the “drag” step of its plan, and will continue the
plan without modification, even after dozens of caterpillar-moving interventions. The sphex
is unable to learn that its innate plan is failing, and thus will not change it.

Successful agents split the task of computing the agent function into three different
periods: when the agent is being designed, some of the computation is done by its designers;
when it is deliberating on its next action, the agent does more computation; and as it learns
from experience, it does even more computation to decide how to modify its behavior.

To the extent that an agent relies on the prior knowledge of its designer rather than
on its own percepts, we say that the agent lacks autonomy. A rational agent should beAUTONOMY

autonomous—it should learn what it can to compensate for partial or incorrect prior knowl-
edge. For example, a vacuum-cleaning agent that learns to foresee where and when additional
dirt will appear will do better than one that does not. As a practical matter, one seldom re-
quires complete autonomy from the start: when the agent has had little or no experience, it

38 Chapter 2. Intelligent Agents

would have to act randomly unless the designer gave some assistance. So, just as evolution
provides animals with enough built-in reflexes so that they can survive long enough to learn
for themselves, it would be reasonable to provide an artificial intelligent agent with some
initial knowledge as well as an ability to learn. After sufficient experience of its environment,
the behavior of a rational agent can become effectively independent of its prior knowledge.
Hence, the incorporation of learning allows one to design a single rational agent that will
succeed in a vast variety of environments.

2.3 THE NATURE OF ENVIRONMENTS

Now that we have a definition of rationality, we are almost ready to think about building ratio-
nal agents. First, however, we must think about task environments, which are essentially theTASK

ENVIRONMENTS

“problems” to which rational agents are the “solutions.” We begin by showing how to specify
a task environment, illustrating the process with a number of examples. We then show that
task environments come in a variety of flavors. The flavor of the task environment directly
affects the appropriate design for the agent program.

Specifying the task environment

In our discussion of the rationality of the simple vacuum-cleaner agent, we had to specify
the performance measure, the environment, and the agent’s actuators and sensors. We will
group all these together under the heading of the task environment. For the acronymically
minded, we call this the PEAS (Performance, Environment, Actuators, Sensors) description.PEAS

In designing an agent, the first step must always be to specify the task environment as fully
as possible.

The vacuum world was a simple example; let us consider a more complex problem:
an automated taxi driver. We will use this example throughout the rest of the chapter. We
should point out, before the reader becomes alarmed, that a fully automated taxi is currently
somewhat beyond the capabilities of existing technology. (See page 27 for a description
of an existing driving robot, or look at recent proceedings of the conferences on Intelligent
Transportation Systems.) The full driving task is extremely open-ended. There is no limit to
the novel combinations of circumstances that can arise—another reason we chose it as a focus
for discussion. Figure 2.4 summarizes the PEAS description for the taxi’s task environment.
We discuss each element in more detail in the following paragraphs.

First, what is the performance measure to which we would like our automated driver
to aspire? Desirable qualities include getting to the correct destination; minimizing fuel con-
sumption and wear and tear; minimizing the trip time and/or cost; minimizing violations of
traffic laws and disturbances to other drivers; maximizing safety and passenger comfort; max-
imizing profits. Obviously, some of these goals conflict, so there will be tradeoffs involved.

Next, what is the driving environment that the taxi will face? Any taxi driver must
deal with a variety of roads, ranging from rural lanes and urban alleys to 12-lane freeways.
The roads contain other traffic, pedestrians, stray animals, road works, police cars, puddles,

Section 2.3. The Nature of Environments 39

Agent Type Performance
Measure

Environment Actuators Sensors

Taxi driver Safe, fast, legal,
comfortable trip,
maximize profits

Roads, other
traffic,
pedestrians,
customers

Steering,
accelerator,
brake, signal,
horn, display

Cameras, sonar,
speedometer,
GPS, odometer,
accelerometer,
engine sensors,
keyboard

Figure 2.4 PEAS description of the task environment for an automated taxi.

and potholes. The taxi must also interact with potential and actual passengers. There are also
some optional choices. The taxi might need to operate in Southern California, where snow
is seldom a problem, or in Alaska, where it seldom is not. It could always be driving on the
right, or we might want it to be flexible enough to drive on the left when in Britain or Japan.
Obviously, the more restricted the environment, the easier the design problem.

The actuators available to an automated taxi will be more or less the same as those
available to a human driver: control over the engine through the accelerator and control over
steering and braking. In addition, it will need output to a display screen or voice synthesizer
to talk back to the passengers, and perhaps some way to communicate with other vehicles,
politely or otherwise.

To achieve its goals in the driving environment, the taxi will need to know where it is,
what else is on the road, and how fast it is going. Its basic sensors should therefore include
one or more controllable TV cameras, the speedometer, and the odometer. To control the
vehicle properly, especially on curves, it should have an accelerometer; it will also need to
know the mechanical state of the vehicle, so it will need the usual array of engine and elec-
trical system sensors. It might have instruments that are not available to the average human
driver: a satellite global positioning system (GPS) to give it accurate position information
with respect to an electronic map, and infrared or sonar sensors to detect distances to other
cars and obstacles. Finally, it will need a keyboard or microphone for the passenger to request
a destination.

In Figure 2.5, we have sketched the basic PEAS elements for a number of additional
agent types. Further examples appear in Exercise 2.5. It may come as a surprise to some
readers that we include in our list of agent types some programs that operate in the entirely
artificial environment defined by keyboard input and character output on a screen. “Surely,”
one might say, “this is not a real environment, is it?” In fact, what matters is not the dis-
tinction between “real” and “artificial” environments, but the complexity of the relationship
among the behavior of the agent, the percept sequence generated by the environment, and the
performance measure. Some “real” environments are actually quite simple. For example, a
robot designed to inspect parts as they come by on a conveyor belt can make use of a num-
ber of simplifying assumptions: that the lighting is always just so, that the only thing on the
conveyer belt will be parts of a kind that it knows about, and that there are only two actions
(accept or reject).

40 Chapter 2. Intelligent Agents

Agent Type Performance
Measure

Environment Actuators Sensors

Medical
diagnosis system

Healthy patient,
minimize costs,
lawsuits

Patient, hospital,
staff

Display
questions, tests,
diagnoses,
treatments,
referrals

Keyboard entry
of symptoms,
findings, patient’s
answers

Satellite image
analysis system

Correct image
categorization

Downlink from
orbiting satellite

Display
categorization of
scene

Color pixel
arrays

Part-picking
robot

Percentage of
parts in correct
bins

Conveyor belt
with parts; bins

Jointed arm and
hand

Camera, joint
angle sensors

Refinery
controller

Maximize purity,
yield, safety

Refinery,
operators

Valves, pumps,
heaters, displays

Temperature,
pressure,
chemical sensors

Interactive
English tutor

Maximize
student’s score
on test

Set of students,
testing agency

Display
exercises,
suggestions,
corrections

Keyboard entry

Figure 2.5 Examples of agent types and their PEAS descriptions.

In contrast, some software agents (or software robots or softbots) exist in rich, un-SOFTWARE AGENTS

SOFTBOTS limited domains. Imagine a softbot designed to fly a flight simulator for a large commercial
airplane. The simulator is a very detailed, complex environment including other aircraft and
ground operations, and the software agent must choose from a wide variety of actions in real
time. Or imagine a softbot designed to scan Internet news sources and show the interesting
items to its customers. To do well, it will need some natural language processing abilities,
it will need to learn what each customer is interested in, and it will need to change its plans
dynamically—for example, when the connection for one news source goes down or when a
new one comes online. The Internet is an environment whose complexity rivals that of the
physical world and whose inhabitants include many artificial agents.

Properties of task environments

The range of task environments that might arise in AI is obviously vast. We can, however,
identify a fairly small number of dimensions along which task environments can be catego-
rized. These dimensions determine, to a large extent, the appropriate agent design and the

Section 2.3. The Nature of Environments 41

applicability of each of the principal families of techniques for agent implementation. First,
we list the dimensions, then we analyze several task environments to illustrate the ideas. The
definitions here are informal; later chapters provide more precise statements and examples of
each kind of environment.

♦ Fully observable vs. partially observable.FULLY OBSERVABLE

If an agent’s sensors give it access to the complete state of the environment at each
point in time, then we say that the task environment is fully observable.4 A task envi-
ronment is effectively fully observable if the sensors detect all aspects that are relevant
to the choice of action; relevance, in turn, depends on the performance measure. Fully
observable environments are convenient because the agent need not maintain any in-
ternal state to keep track of the world. An environment might be partially observable
because of noisy and inaccurate sensors or because parts of the state are simply missing
from the sensor data—for example, a vacuum agent with only a local dirt sensor cannot
tell whether there is dirt in other squares, and an automated taxi cannot see what other
drivers are thinking.

♦ Deterministic vs. stochastic.DETERMINISTIC

STOCHASTIC If the next state of the environment is completely determined by the current state and
the action executed by the agent, then we say the environment is deterministic; other-
wise, it is stochastic. In principle, an agent need not worry about uncertainty in a fully
observable, deterministic environment. If the environment is partially observable, how-
ever, then it could appear to be stochastic. This is particularly true if the environment
is complex, making it hard to keep track of all the unobserved aspects. Thus, it is often
better to think of an environment as deterministic or stochastic from the point of view of
the agent. Taxi driving is clearly stochastic in this sense, because one can never predict
the behavior of traffic exactly; moreover, one’s tires blow out and one’s engine seizes
up without warning. The vacuum world as we described it is deterministic, but varia-
tions can include stochastic elements such as randomly appearing dirt and an unreliable
suction mechanism (Exercise 2.12). If the environment is deterministic except for the
actions of other agents, we say that the environment is strategic.STRATEGIC

♦ Episodic vs. sequential.5EPISODIC

SEQUENTIAL In an episodic task environment, the agent’s experience is divided into atomic episodes.
Each episode consists of the agent perceiving and then performing a single action. Cru-
cially, the next episode does not depend on the actions taken in previous episodes. In
episodic environments, the choice of action in each episode depends only on the episode
itself. Many classification tasks are episodic. For example, an agent that has to spot de-
fective parts on an assembly line bases each decision on the current part, regardless
of previous decisions; moreover, the current decision doesn’t affect whether the next

4 The first edition of this book used the terms accessible and inaccessible instead of fully and partially observ-
able; nondeterministic instead of stochastic; and nonepisodic instead of sequential. The new terminology is
more consistent with established usage.
5 The word “sequential” is also used in computer science as the antonym of “parallel.” The two meanings are
largely unrelated.

42 Chapter 2. Intelligent Agents

part is defective. In sequential environments, on the other hand, the current decision
could affect all future decisions. Chess and taxi driving are sequential: in both cases,
short-term actions can have long-term consequences. Episodic environments are much
simpler than sequential environments because the agent does not need to think ahead.

♦ Static vs. dynamic.STATIC

DYNAMIC If the environment can change while an agent is deliberating, then we say the environ-
ment is dynamic for that agent; otherwise, it is static. Static environments are easy to
deal with because the agent need not keep looking at the world while it is deciding on
an action, nor need it worry about the passage of time. Dynamic environments, on the
other hand, are continuously asking the agent what it wants to do; if it hasn’t decided
yet, that counts as deciding to do nothing. If the environment itself does not change
with the passage of time but the agent’s performance score does, then we say the envi-
ronment is semidynamic. Taxi driving is clearly dynamic: the other cars and the taxiSEMIDYNAMIC

itself keep moving while the driving algorithm dithers about what to do next. Chess,
when played with a clock, is semidynamic. Crossword puzzles are static.

♦ Discrete vs. continuous.DISCRETE

CONTINUOUS The discrete/continuous distinction can be applied to the state of the environment, to
the way time is handled, and to the percepts and actions of the agent. For example, a
discrete-state environment such as a chess game has a finite number of distinct states.
Chess also has a discrete set of percepts and actions. Taxi driving is a continuous-
state and continuous-time problem: the speed and location of the taxi and of the other
vehicles sweep through a range of continuous values and do so smoothly over time.
Taxi-driving actions are also continuous (steering angles, etc.). Input from digital cam-
eras is discrete, strictly speaking, but is typically treated as representing continuously
varying intensities and locations.

♦ Single agent vs. multiagent.SINGLE AGENT

MULTIAGENT The distinction between single-agent and multiagent environments may seem simple
enough. For example, an agent solving a crossword puzzle by itself is clearly in a
single-agent environment, whereas an agent playing chess is in a two-agent environ-
ment. There are, however, some subtle issues. First, we have described how an entity
may be viewed as an agent, but we have not explained which entities must be viewed as
agents. Does an agent A (the taxi driver for example) have to treat an object B (another
vehicle) as an agent, or can it be treated merely as a stochastically behaving object,
analogous to waves at the beach or leaves blowing in the wind? The key distinction is
whether B’s behavior is best described as maximizing a performance measure whose
value depends on agent A’s behavior. For example, in chess, the opponent entity B is
trying to maximize its performance measure, which, by the rules of chess, minimizes
agent A’s performance measure. Thus, chess is a competitive multiagent environment.COMPETITIVE

In the taxi-driving environment, on the other hand, avoiding collisions maximizes the
performance measure of all agents, so it is a partially cooperative multiagent environ-COOPERATIVE

ment. It is also partially competitive because, for example, only one car can occupy a
parking space. The agent-design problems arising in multiagent environments are often

Section 2.3. The Nature of Environments 43

Task Environment Observable Deterministic Episodic Static Discrete Agents

Crossword puzzle Fully Deterministic Sequential Static Discrete Single
Chess with a clock Fully Strategic Sequential Semi Discrete Multi

Poker Partially Strategic Sequential Static Discrete Multi
Backgammon Fully Stochastic Sequential Static Discrete Multi

Taxi driving Partially Stochastic Sequential Dynamic Continuous Multi
Medical diagnosis Partially Stochastic Sequential Dynamic Continuous Single

Image-analysis Fully Deterministic Episodic Semi Continuous Single
Part-picking robot Partially Stochastic Episodic Dynamic Continuous Single

Refinery controller Partially Stochastic Sequential Dynamic Continuous Single
Interactive English tutor Partially Stochastic Sequential Dynamic Discrete Multi

Figure 2.6 Examples of task environments and their characteristics.

quite different from those in single-agent environments; for example, communication
often emerges as a rational behavior in multiagent environments; in some partially ob-
servable competitive environments, stochastic behavior is rational because it avoids
the pitfalls of predictability.

As one might expect, the hardest case is partially observable, stochastic, sequential, dynamic,
continuous, and multiagent. It also turns out that most real situations are so complex that
whether they are really deterministic is a moot point. For practical purposes, they must be
treated as stochastic. Taxi driving is hard in all these senses.

Figure 2.6 lists the properties of a number of familiar environments. Note that the an-
swers are not always cut and dried. For example, we have listed chess as fully observable;
strictly speaking, this is false because certain rules about castling, en passant capture, and
draws by repetition require remembering some facts about the game history that are not ob-
servable as part of the board state. These exceptions to observability are of course minor
compared to those faced by the taxi driver, the English tutor, or the medical diagnosis system.

Some other answers in the table depend on how the task environment is defined. We
have listed the medical-diagnosis task as single-agent because the disease process in a patient
is not profitably modeled as an agent; but a medical-diagnosis system might also have to
deal with recalcitrant patients and skeptical staff, so the environment could have a multiagent
aspect. Furthermore, medical diagnosis is episodic if one conceives of the task as selecting a
diagnosis given a list of symptoms; the problem is sequential if the task can include proposing
a series of tests, evaluating progress over the course of treatment, and so on. Also, many
environments are episodic at higher levels than the agent’s individual actions. For example,
a chess tournament consists of a sequence of games; each game is an episode, because (by
and large) the contribution of the moves in one game to the agent’s overall performance is
not affected by the moves in its previous game. On the other hand, decision making within a
single game is certainly sequential.

44 Chapter 2. Intelligent Agents

The code repository associated with this book (aima.cs.berkeley.edu) includes imple-
mentations of a number of environments, together with a general-purpose environment simu-
lator that places one or more agents in a simulated environment, observes their behavior over
time, and evaluates them according to a given performance measure. Such experiments are
often carried out not for a single environment, but for many environments drawn from an en-
vironment class. For example, to evaluate a taxi driver in simulated traffic, we would want toENVIRONMENT

CLASS

run many simulations with different traffic, lighting, and weather conditions. If we designed
the agent for a single scenario, we might be able to take advantage of specific properties
of the particular case but might not identify a good design for driving in general. For this
reason, the code repository also includes an environment generator for each environmentENVIRONMENT

GENERATOR

class that selects particular environments (with certain likelihoods) in which to run the agent.
For example, the vacuum environment generator initializes the dirt pattern and agent location
randomly. We are then interested in the agent’s average performance over the environment
class. A rational agent for a given environment class maximizes this average performance.
Exercises 2.7 to 2.12 take you through the process of developing an environment class and
evaluating various agents therein.

2.4 THE STRUCTURE OF AGENTS

So far we have talked about agents by describing behavior—the action that is performed
after any given sequence of percepts. Now, we will have to bite the bullet and talk about
how the insides work. The job of AI is to design the agent program that implements theAGENT PROGRAM

agent function mapping percepts to actions. We assume this program will run on some sort
of computing device with physical sensors and actuators—we call this the architecture:ARCHITECTURE

agent = architecture + program .

Obviously, the program we choose has to be one that is appropriate for the architecture. If the
program is going to recommend actions like Walk, the architecture had better have legs. The
architecture might be just an ordinary PC, or it might be a robotic car with several onboard
computers, cameras, and other sensors. In general, the architecture makes the percepts from
the sensors available to the program, runs the program, and feeds the program’s action choices
to the actuators as they are generated. Most of this book is about designing agent programs,
although Chapters 24 and 25 deal directly with the sensors and actuators.

Agent programs

The agent programs that we will design in this book all have the same skeleton: they take the
current percept as input from the sensors and return an action to the actuators.6 Notice the
difference between the agent program, which takes the current percept as input, and the agent
function, which takes the entire percept history. The agent program takes just the current

6 There are other choices for the agent program skeleton; for example, we could have the agent programs be
coroutines that run asynchronously with the environment. Each such coroutine has an input and output port and
consists of a loop that reads the input port for percepts and writes actions to the output port.

Section 2.4. The Structure of Agents 45

function TABLE-DRIVEN-AGENT(percept) returns an action
static: percepts , a sequence, initially empty

table , a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts

action← LOOKUP(percepts , table)
return action

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and
returns an action each time. It keeps track of the percept sequence using its own private data
structure.

perept as input because nothing more is available from the environment; if the agent’s actions
depend on the entire percept sequence, the agent will have to remember the percepts.

We will describe the agent programs via the simple pseudocode language that is defined
in Appendix B. (The online code repository contains implementations in real programming
languages.) For example, Figure 2.7 shows a rather trivial agent program that keeps track of
the percept sequence and then uses it to index into a table of actions to decide what to do.
The table represents explicitly the agent function that the agent program embodies. To build a
rational agent in this way, we as designers must construct a table that contains the appropriate
action for every possible percept sequence.

It is instructive to consider why the table-driven approach to agent construction is
doomed to failure. Let P be the set of possible percepts and let T be the lifetime of the
agent (the total number of percepts it will receive). The lookup table will contain

∑T
t =1 |P|

t

entries. Consider the automated taxi: the visual input from a single camera comes in at the
rate of roughly 27 megabytes per second (30 frames per second, 640× 480 pixels with 24
bits of color information). This gives a lookup table with over 10250,000,000,000 entries for an
hour’s driving. Even the lookup table for chess—a tiny, well-behaved fragment of the real
world—would have at least 10150 entries. The daunting size of these tables (the number of
atoms in the observable universe is less than 1080) means that (a) no physical agent in this
universe will have the space to store the table, (b) the designer would not have time to create
the table, (c) no agent could ever learn all the right table entries from its experience, and (d)
even if the environment is simple enough to yield a feasible table size, the designer still has
no guidance about how to fill in the table entries.

Despite all this, TABLE-DRIVEN-AGENT does do what we want: it implements the
desired agent function. The key challenge for AI is to find out how to write programs that,
to the extent possible, produce rational behavior from a small amount of code rather than
from a large number of table entries. We have many examples showing that this can be done
successfully in other areas: for example, the huge tables of square roots used by engineers
and schoolchildren prior to the 1970s have now been replaced by a five-line program for
Newton’s method running on electronic calculators. The question is, can AI do for general
intelligent behavior what Newton did for square roots? We believe the answer is yes.

46 Chapter 2. Intelligent Agents

function REFLEX-VACUUM-AGENT([location ,status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

Figure 2.8 The agent program for a simple reflex agent in the two-state vacuum environ-
ment. This program implements the agent function tabulated in Figure 2.3.

In the remainder of this section, we outline four basic kinds of agent program that
embody the principles underlying almost all intelligent systems:

• Simple reflex agents;

• Model-based reflex agents;

• Goal-based agents; and

• Utility-based agents.

We then explain in general terms how to convert all these into learning agents.

Simple reflex agents

The simplest kind of agent is the simple reflex agent. These agents select actions on the basisSIMPLE REFLEX
AGENT

of the current percept, ignoring the rest of the percept history. For example, the vacuum agent
whose agent function is tabulated in Figure 2.3 is a simple reflex agent, because its decision
is based only on the current location and on whether that contains dirt. An agent program for
this agent is shown in Figure 2.8.

Notice that the vacuum agent program is very small indeed compared to the correspond-
ing table. The most obvious reduction comes from ignoring the percept history, which cuts
down the number of possibilities from 4T to just 4. A further, small reduction comes from
the fact that, when the current square is dirty, the action does not depend on the location.

Imagine yourself as the driver of the automated taxi. If the car in front brakes, and its
brake lights come on, then you should notice this and initiate braking. In other words, some
processing is done on the visual input to establish the condition we call “The car in front is
braking.” Then, this triggers some established connection in the agent program to the action
“initiate braking.” We call such a connection a condition–action rule,7 written asCONDITION–ACTION

RULE

if car-in-front-is-braking then initiate-braking.

Humans also have many such connections, some of which are learned responses (as for driv-
ing) and some of which are innate reflexes (such as blinking when something approaches the
eye). In the course of the book, we will see several different ways in which such connections
can be learned and implemented.

The program in Figure 2.8 is specific to one particular vacuum environment. A more
general and flexible approach is first to build a general-purpose interpreter for condition–

7 Also called situation–action rules, productions, or if–then rules.

Section 2.4. The Structure of Agents 47

Agent

E
nvironm

ent

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Figure 2.9 Schematic diagram of a simple reflex agent.

function SIMPLE-REFLEX-AGENT(percept) returns an action
static: rules , a set of condition–action rules

state← INTERPRET-INPUT(percept)
rule←RULE-MATCH(state , rules)
action←RULE-ACTION[rule]
return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches
the current state, as defined by the percept.

action rules and then to create rule sets for specific task environments. Figure 2.9 gives the
structure of this general program in schematic form, showing how the condition–action rules
allow the agent to make the connection from percept to action. (Do not worry if this seems
trivial; it gets more interesting shortly.) We use rectangles to denote the current internal state
of the agent’s decision process and ovals to represent the background information used in
the process. The agent program, which is also very simple, is shown in Figure 2.10. The
INTERPRET-INPUT function generates an abstracted description of the current state from the
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches
the given state description. Note that the description in terms of “rules” and “matching” is
purely conceptual; actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit.

Simple reflex agents have the admirable property of being simple, but they turn out to
be of very limited intelligence. The agent in Figure 2.10 will work only if the correct deci-
sion can be made on the basis of only the current percept—that is, only if the environment is
fully observable. Even a little bit of unobservability can cause serious trouble. For example,

48 Chapter 2. Intelligent Agents

the braking rule given earlier assumes that the condition car-in-front-is-braking can be deter-
mined from the current percept—the current video image—if the car in front has a centrally
mounted brake light. Unfortunately, older models have different configurations of taillights,
brake lights, and turn-signal lights, and it is not always possible to tell from a single image
whether the car is braking. A simple reflex agent driving behind such a car would either brake
continuously and unnecessarily, or, worse, never brake at all.

We can see a similar problem arising in the vacuum world. Suppose that a simple reflex
vacuum agent is deprived of its location sensor, and has only a dirt sensor. Such an agent
has just two possible percepts: [Dirty] and [Clean]. It can Suck in response to [Dirty]; what
should it do in response to [Clean]? Moving Left fails (for ever) if it happens to start in
square A, and moving Right fails (for ever) if it happens to start in square B. Infinite loops
are often unavoidable for simple reflex agents operating in partially observable environments.

Escape from infinite loops is possible if the agent can randomize its actions. For ex-RANDOMIZATION

ample, if the vacuum agent perceives [Clean], it might flip a coin to choose between Left and
Right . It is easy to show that the agent will reach the other square in an average of two steps.
Then, if that square is dirty, it will clean it and the cleaning task will be complete. Hence, a
randomized simple reflex agent might outperform a deterministic simple reflex agent.

We mentioned in Section 2.3 that randomized behavior of the right kind can be rational
in some multiagent environments. In single-agent environments, randomization is usually not
rational. It is a useful trick that helps a simple reflex agent in some situations, but in most
cases we can do much better with more sophisticated deterministic agents.

Model-based reflex agents

The most effective way to handle partial observability is for the agent to keep track of the
part of the world it can’t see now. That is, the agent should maintain some sort of internal
state that depends on the percept history and thereby reflects at least some of the unobservedINTERNAL STATE

aspects of the current state. For the braking problem, the internal state is not too extensive—
just the previous frame from the camera, allowing the agent to detect when two red lights at
the edge of the vehicle go on or off simultaneously. For other driving tasks such as changing
lanes, the agent needs to keep track of where the other cars are if it can’t see them all at once.

Updating this internal state information as time goes by requires two kinds of knowl-
edge to be encoded in the agent program. First, we need some information about how the
world evolves independently of the agent—for example, that an overtaking car generally will
be closer behind than it was a moment ago. Second, we need some information about how
the agent’s own actions affect the world—for example, that when the agent turns the steering
wheel clockwise, the car turns to the right or that after driving for five minutes northbound
on the freeway one is usually about five miles north of where one was five minutes ago. This
knowledge about “how the world works”—whether implemented in simple Boolean circuits
or in complete scientific theories—is called a model of the world. An agent that uses such a
model is called a model-based agent.MODEL-BASED

AGENT

Figure 2.11 gives the structure of the reflex agent with internal state, showing how the
current percept is combined with the old internal state to generate the updated description

Section 2.4. The Structure of Agents 49

Agent

E
nvironm

ent

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function REFLEX-AGENT-WITH-STATE(percept) returns an action
static: state , a description of the current world state

rules , a set of condition–action rules
action , the most recent action, initially none

state←UPDATE-STATE(state ,action ,percept)
rule←RULE-MATCH(state , rules)
action←RULE-ACTION[rule]
return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world
using an internal model. It then chooses an action in the same way as the reflex agent.

of the current state. The agent program is shown in Figure 2.12. The interesting part is the
function UPDATE-STATE, which is responsible for creating the new internal state description.
As well as interpreting the new percept in the light of existing knowledge about the state, it
uses information about how the world evolves to keep track of the unseen parts of the world,
and also must know about what the agent’s actions do to the state of the world. Detailed
examples appear in Chapters 10 and 17.

Goal-based agents

Knowing about the current state of the environment is not always enough to decide what
to do. For example, at a road junction, the taxi can turn left, turn right, or go straight on.
The correct decision depends on where the taxi is trying to get to. In other words, as well
as a current state description, the agent needs some sort of goal information that describesGOAL

situations that are desirable—for example, being at the passenger’s destination. The agent

50 Chapter 2. Intelligent Agents

Agent

E
nvironm

ent

Sensors

What action I
should do now

State

How the world evolves

What my actions do

Actuators

What the world
is like now

What it will be like
 if I do action A

Goals

Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

program can combine this with information about the results of possible actions (the same
information as was used to update internal state in the reflex agent) in order to choose actions
that achieve the goal. Figure 2.13 shows the goal-based agent’s structure.

Sometimes goal-based action selection is straightforward, when goal satisfaction results
immediately from a single action. Sometimes it will be more tricky, when the agent has
to consider long sequences of twists and turns to find a way to achieve the goal. Search
(Chapters 3 to 6) and planning (Chapters 11 and 12) are the subfields of AI devoted to
finding action sequences that achieve the agent’s goals.

Notice that decision making of this kind is fundamentally different from the condition–
action rules described earlier, in that it involves consideration of the future—both “What will
happen if I do such-and-such?” and “Will that make me happy?” In the reflex agent designs,
this information is not explicitly represented, because the built-in rules map directly from
percepts to actions. The reflex agent brakes when it sees brake lights. A goal-based agent, in
principle, could reason that if the car in front has its brake lights on, it will slow down. Given
the way the world usually evolves, the only action that will achieve the goal of not hitting
other cars is to brake.

Although the goal-based agent appears less efficient, it is more flexible because the
knowledge that supports its decisions is represented explicitly and can be modified. If it starts
to rain, the agent can update its knowledge of how effectively its brakes will operate; this will
automatically cause all of the relevant behaviors to be altered to suit the new conditions. For
the reflex agent, on the other hand, we would have to rewrite many condition–action rules.
The goal-based agent’s behavior can easily be changed to go to a different location. The reflex
agent’s rules for when to turn and when to go straight will work only for a single destination;
they must all be replaced to go somewhere new.

Section 2.4. The Structure of Agents 51

Utility-based agents

Goals alone are not really enough to generate high-quality behavior in most environments.
For example, there are many action sequences that will get the taxi to its destination (thereby
achieving the goal) but some are quicker, safer, more reliable, or cheaper than others. Goals
just provide a crude binary distinction between “happy” and “unhappy” states, whereas a
more general performance measure should allow a comparison of different world states ac-
cording to exactly how happy they would make the agent if they could be achieved. Because
“happy” does not sound very scientific, the customary terminology is to say that if one world
state is preferred to another, then it has higher utility for the agent.8UTILITY

A utility function maps a state (or a sequence of states) onto a real number, whichUTILITY FUNCTION

describes the associated degree of happiness. A complete specification of the utility function
allows rational decisions in two kinds of cases where goals are inadequate. First, when there
are conflicting goals, only some of which can be achieved (for example, speed and safety),
the utility function specifies the appropriate tradeoff. Second, when there are several goals
that the agent can aim for, none of which can be achieved with certainty, utility provides a
way in which the likelihood of success can be weighed up against the importance of the goals.

In Chapter 16, we will show that any rational agent must behave as if it possesses a
utility function whose expected value it tries to maximize. An agent that possesses an explicit
utility function therefore can make rational decisions, and it can do so via a general-purpose
algorithm that does not depend on the specific utility function being maximized. In this way,
the “global” definition of rationality—designating as rational those agent functions that have
the highest performance—is turned into a “local” constraint on rational-agent designs that
can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Part V, where we design decision making agents that must handle the uncertainty
inherent in partially observable environments.

Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.
He estimates how much work this might take and concludes “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agent to operate
in initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
In almost every chapter of the book, we will comment on opportunities and methods for
learning in particular kinds of agents. Part VI goes into much more depth on the various
learning algorithms themselves.

8 The word “utility” here refers to “the quality of being useful,” not to the electric company or water works.

52 Chapter 2. Intelligent Agents

Agent

E
nvironm

ent

Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators

What action I
should do now

What it will be like
if I do action A

What the world
is like now

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-LEARNING ELEMENT

sponsible for making improvements, and the performance element, which is responsible forPERFORMANCE
ELEMENT

selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performanceCRITIC

element should be modified to do better in the future.
The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent need to do this once it has learned how?” Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance
standard be fixed. Conceptually, one should think of it as being outside the agent altogether,
because the agent must not modify it to fit its own behavior.

The last component of the learning agent is the problem generator. It is responsiblePROBLEM
GENERATOR

for suggesting actions that will lead to new and informative experiences. The point is that
if the performance element had its way, it would keep doing the actions that are best, given
what it knows. But if the agent is willing to explore a little, and do some perhaps suboptimal
actions in the short run, it might discover much better actions for the long run. The problem

Section 2.4. The Structure of Agents 53

Performance standard

Agent

E
nvironm

ent
Sensors

Performance
element

changes

knowledge
learning
 goals

Problem
generator

feedback

 Learning
element

Critic

Actuators

Figure 2.15 A general model of learning agents.

generator’s job is to suggest these exploratory actions. This is what scientists do when they
carry out experiments. Galileo did not think that dropping rocks from the top of a tower in
Pisa was valuable in itself. He was not trying to break the rocks, nor to modify the brains of
unfortunate passers-by. His aim was to modify his own brain, by identifying a better theory
of the motion of objects.

To make the overall design more concrete, let us return to the automated taxi example.
The performance element consists of whatever collection of knowledge and procedures the
taxi has for selecting its driving actions. The taxi goes out on the road and drives, using
this performance element. The critic observes the world and passes information along to the
learning element. For example, after the taxi makes a quick left turn across three lanes of
traffic, the critic observes the shocking language used by other drivers. From this experience,
the learning element is able to formulate a rule saying this was a bad action, and the perfor-
mance element is modified by installing the new rule. The problem generator might identify
certain areas of behavior in need of improvement and suggest experiments, such as trying out
the brakes on different road surfaces under different conditions.

The learning element can make changes to any of the “knowledge” components shown
in the agent diagrams (Figures 2.9, 2.11, 2.13, and 2.14). The simplest cases involve learning
directly from the percept sequence. Observation of pairs of successive states of the environ-
ment can allow the agent to learn “How the world evolves,” and observation of the results of
its actions can allow the agent to learn “What my actions do.” For example, if the taxi exerts
a certain braking pressure when driving on a wet road, then it will soon find out how much
deceleration is actually achieved. Clearly, these two learning tasks are more difficult if the
environment is only partially observable.

The forms of learning in the preceding paragraph do not need to access the external
performance standard—in a sense, the standard is the universal one of making predictions

54 Chapter 2. Intelligent Agents

that agree with experiment. The situation is slightly more complex for a utility-based agent
that wishes to learn utility information. For example, suppose the taxi-driving agent receives
no tips from passengers who have been thoroughly shaken up during the trip. The external
performance standard must inform the agent that the loss of tips is a negative contribution to
its overall performance; then the agent might be able to learn that violent maneuvers do not
contribute to its own utility. In a sense, the performance standard distinguishes part of the
incoming percept as a reward (or penalty) that provides direct feedback on the quality of the
agent’s behavior. Hard-wired performance standards such as pain and hunger in animals can
be understood in this way. This issue is discussed further in Chapter 21.

In summary, agents have a variety of components, and those components can be repre-
sented in many ways within the agent program, so there appears to be great variety among
learning methods. There is, however, a single unifying theme. Learning in intelligent agents
can be summarized as a process of modification of each component of the agent to bring the
components into closer agreement with the available feedback information, thereby improv-
ing the overall performance of the agent.

2.5 SUMMARY

This chapter has been something of a whirlwind tour of AI, which we have conceived of as
the science of agent design. The major points to recall are as follows:

• An agent is something that perceives and acts in an environment. The agent function
for an agent specifies the action taken by the agent in response to any percept sequence.

• The performance measure evaluates the behavior of the agent in an environment. A
rational agent acts so as to maximize the expected value of the performance measure,
given the percept sequence it has seen so far.

• A task environment specification includes the performance measure, the external en-
vironment, the actuators, and the sensors. In designing an agent, the first step must
always be to specify the task environment as fully as possible.

• Task environments vary along several significant dimensions. They can be fully or par-
tially observable, deterministic or stochastic, episodic or sequential, static or dynamic,
discrete or continuous, and single-agent or multiagent.

• The agent program implements the agent function. There exists a variety of basic
agent-program designs, reflecting the kind of information made explicit and used in
the decision process. The designs vary in efficiency, compactness, and flexibility. The
appropriate design of the agent program depends on the nature of the environment.

• Simple reflex agents respond directly to percepts, whereas model-based reflex agents
maintain internal state to track aspects of the world that are not evident in the current
percept. Goal-based agents act to achieve their goals, and utility-based agents try to
maximize their own expected “happiness.”

• All agents can improve their performance through learning.

Section 2.5. Summary 55

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The central role of action in intelligence—the notion of practical reasoning—goes back at
least as far as Aristotle’s Nicomachean Ethics. Practical reasoning was also the subject of
McCarthy’s (1958) influential paper “Programs with Common Sense.” The fields of robotics
and control theory are, by their very nature, concerned principally with the construction of
physical agents. The concept of a controller in control theory is identical to that of an agent inCONTROLLER

AI. Perhaps surprisingly, AI has concentrated for most of its history on isolated components
of agents—question-answering systems, theorem-provers, vision systems, and so on—rather
than on whole agents. The discussion of agents in the text by Genesereth and Nilsson (1987)
was an influential exception. The whole-agent view is now widely accepted in the field and
is a central theme in recent texts (Poole et al., 1998; Nilsson, 1998).

Chapter 1 traced the roots of the concept of rationality in philosophy and economics. In
AI, the concept was of peripheral interest until the mid-1980s, when it began to suffuse many
discussions about the proper technical foundations of the field. A paper by Jon Doyle (1983)
predicted that rational agent design would come to be seen as the core mission of AI, while
other popular topics would spin off to form new disciplines.

Careful attention to the properties of the environment and their consequences for ratio-
nal agent design is most apparent in the control theory tradition—for example, classical con-
trol systems (Dorf and Bishop, 1999) handle fully observable, deterministic environments;
stochastic optimal control (Kumar and Varaiya, 1986) handles partially observable, stochas-
tic environments; and hybrid control (Henzinger and Sastry, 1998) deals with environments
containing both discrete and continuous elements. The distinction between fully and partially
observable environments is also central in the dynamic programming literature developed
in the field of operations research (Puterman, 1994), which we will discuss in Chapter 17.

Reflex agents were the primary model for psychological behaviorists such as Skinner
(1953), who attempted to reduce the psychology of organisms strictly to input/output or stim-
ulus/response mappings. The advance from behaviorism to functionalism in psychology,
which was at least partly driven by the application of the computer metaphor to agents (Put-
nam, 1960; Lewis, 1966), introduced the internal state of the agent into the picture. Most
work in AI views the idea of pure reflex agents with state as too simple to provide much
leverage, but work by Rosenschein (1985) and Brooks (1986) questioned this assumption
(see Chapter 25). In recent years, a great deal of work has gone into finding efficient al-
gorithms for keeping track of complex environments (Hamscher et al., 1992). The Remote
Agent program that controlled the Deep Space One spacecraft (described on page 27) is a
particularly impressive example (Muscettola et al., 1998; Jonsson et al., 2000).

Goal-based agents are presupposed in everything from Aristotle’s view of practical rea-
soning to McCarthy’s early papers on logical AI. Shakey the Robot (Fikes and Nilsson,
1971; Nilsson, 1984) was the first robotic embodiment of a logical, goal-based agent. A
full logical analysis of goal-based agents appeared in Genesereth and Nilsson (1987), and a
goal-based programming methodology called agent-oriented programming was developed by
Shoham (1993).

56 Chapter 2. Intelligent Agents

The goal-based view also dominates the cognitive psychology tradition in the area of
problem solving, beginning with the enormously influential Human Problem Solving (Newell
and Simon, 1972) and running through all of Newell’s later work (Newell, 1990). Goals,
further analyzed as desires (general) and intentions (currently pursued), are central to the
theory of agents developed by Bratman (1987). This theory has been influential both in
natural language understanding and multiagent systems.

Horvitz et al. (1988) specifically suggest the use of rationality conceived as the maxi-
mization of expected utility as a basis for AI. The text by Pearl (1988) was the first in AI to
cover probability and utility theory in depth; its exposition of practical methods for reasoning
and decision making under uncertainty was probably the single biggest factor in the rapid
shift towards utility-based agents in the 1990s (see Part V).

The general design for learning agents portrayed in Figure 2.15 is classic in the machine
learning literature (Buchanan et al., 1978; Mitchell, 1997). Examples of the design, as em-
bodied in programs, go back at least as far as Arthur Samuel’s (1959, 1967) learning program
for playing checkers. Learning agents are discussed in depth in Part VI.

Interest in agents and in agent design has risen rapidly in recent years, partly because
of the growth of the Internet and the perceived need for automated and mobile softbots (Et-
zioni and Weld, 1994). Relevant papers are collected in Readings in Agents (Huhns and
Singh, 1998) and Foundations of Rational Agency (Wooldridge and Rao, 1999). Multiagent
Systems (Weiss, 1999) provides a solid foundation for many aspects of agent design. Confer-
ences devoted to agents include the International Conference on Autonomous Agents, the In-
ternational Workshop on Agent Theories, Architectures, and Languages, and the International
Conference on Multiagent Systems. Finally, Dung Beetle Ecology (Hanski and Cambefort,
1991) provides a wealth of interesting information on the behavior of dung beetles.

EXERCISES

2.1 Define in your own words the following terms: agent, agent function, agent program,
rationality, autonomy, reflex agent, model-based agent, goal-based agent, utility-based agent,
learning agent.

2.2 Both the performance measure and the utility function measure how well an agent is
doing. Explain the difference between the two.

2.3 This exercise explores the differences between agent functions and agent programs.

a. Can there be more than one agent program that implements a given agent function?
Give an example, or show why one is not possible.

b. Are there agent functions that cannot be implemented by any agent program?

c. Given a fixed machine architecture, does each agent program implement exactly one
agent function?

d. Given an architecture with n bits of storage, how many different possible agent pro-
grams are there?

Section 2.5. Summary 57

2.4 Let us examine the rationality of various vacuum-cleaner agent functions.

a. Show that the simple vacuum-cleaner agent function described in Figure 2.3 is indeed
rational under the assumptions listed on page 36.

b. Describe a rational agent function for the modified performance measure that deducts
one point for each movement. Does the corresponding agent program require internal
state?

c. Discuss possible agent designs for the cases in which clean squares can become dirty
and the geography of the environment is unknown. Does it make sense for the agent to
learn from its experience in these cases? If so, what should it learn?

2.5 For each of the following agents, develop a PEAS description of the task environment:

a. Robot soccer player;

b. Internet book-shopping agent;

c. Autonomous Mars rover;

d. Mathematician’s theorem-proving assistant.

2.6 For each of the agent types listed in Exercise 2.5, characterize the environment accord-
ing to the properties given in Section 2.3, and select a suitable agent design.

The following exercises all concern the implementation of environments and agents for the
vacuum-cleaner world.

2.7 Implement a performance-measuring environment simulator for the vacuum-cleaner
world depicted in Figure 2.2 and specified on page 36. Your implementation should be modu-
lar, so that the sensors, actuators, and environment characteristics (size, shape, dirt placement,
etc.) can be changed easily. (Note: for some choices of programming language and operating
system there are already implementations in the online code repository.)

2.8 Implement a simple reflex agent for the vacuum environment in Exercise 2.7. Run
the environment simulator with this agent for all possible initial dirt configurations and agent
locations. Record the agent’s performance score for each configuration and its overall average
score.

2.9 Consider a modified version of the vacuum environment in Exercise 2.7, in which the
agent is penalized one point for each movement.

a. Can a simple reflex agent be perfectly rational for this environment? Explain.

b. What about a reflex agent with state? Design such an agent.

c. How do your answers to a and b change if the agent’s percepts give it the clean/dirty
status of every square in the environment?

2.10 Consider a modified version of the vacuum environment in Exercise 2.7, in which the
geography of the environment—its extent, boundaries, and obstacles—is unknown, as is the
initial dirt configuration. (The agent can go Up and Down as well as Left and Right .)

a. Can a simple reflex agent be perfectly rational for this environment? Explain.

58 Chapter 2. Intelligent Agents

b. Can a simple reflex agent with a randomized agent function outperform a simple reflex
agent? Design such an agent and measure its performance on several environments.

c. Can you design an environment in which your randomized agent will perform very
poorly? Show your results.

d. Can a reflex agent with state outperform a simple reflex agent? Design such an agent
and measure its performance on several environments. Can you design a rational agent
of this type?

2.11 Repeat Exercise 2.10 for the case in which the location sensor is replaced with a
“bump” sensor that detects the agent’s attempts to move into an obstacle or to cross the
boundaries of the environment. Suppose the bump sensor stops working; how should the
agent behave?

2.12 The vacuum environments in the preceding exercises have all been deterministic. Dis-
cuss possible agent programs for each of the following stochastic versions:

a. Murphy’s law: twenty-five percent of the time, the Suck action fails to clean the floor if
it dirty and deposits dirt onto the floor if the floor is clean. How is your agent program
affected if the dirt sensor gives the wrong answer 10% of the time?

b. Small children: At each time step, each clean square has a 10% chance of becoming
dirty. Can you come up with a rational agent design for this case?

