function TABLE-DRIVEN-AGENT(\textit{percept}) \textit{returns} an action
\hspace{1em} \textbf{persistent:} \textit{percepts}, a sequence, initially empty
\hspace{2em} \textit{table}, a table of actions, indexed by percept sequences, initially fully specified

append \textit{percept} to the end of \textit{percepts}
\hspace{1em} \textit{action} ← LOOKUP(\textit{percepts}, \textit{table})
\hspace{1em} \textbf{return} \textit{action}

\textbf{Figure 2.7} The TABLE-DRIVEN-AGENT program is invoked for each new percept and returns an action each time. It retains the complete percept sequence in memory.

function REFLEX-VACUUM-AGENT([\textit{location}, \textit{status}]) \textit{returns} an action
\hspace{1em} \textbf{if} \textit{status} = \textit{Dirty} \textbf{then return} \textit{Suck}
\hspace{1em} \textbf{else if} \textit{location} = \textit{A} \textbf{then return} \textit{Right}
\hspace{1em} \textbf{else if} \textit{location} = \textit{B} \textbf{then return} \textit{Left}

\textbf{Figure 2.8} The agent program for a simple reflex agent in the two-location vacuum environment. This program implements the agent function tabulated in Figure ??.

function SIMPLE-REFLEX-AGENT(\textit{percept}) \textit{returns} an action
\hspace{1em} \textbf{persistent:} \textit{rules}, a set of condition–action rules
\hspace{2em} \textit{state} ← INTERPRET-INPUT(\textit{percept})
\hspace{2em} \textit{rule} ← RULE-MATCH(\textit{state}, \textit{rules})
\hspace{2em} \textit{action} ← \textit{rule}.\textit{ACTION}
\hspace{1em} \textbf{return} \textit{action}

\textbf{Figure 2.10} A simple reflex agent. It acts according to a rule whose condition matches the current state, as defined by the percept.
function MODEL-BASED-REFLEX-AGENT(percept) returns an action

persistent: state, the agent’s current conception of the world state
transition_model, a description of how the next state depends on
the current state and action
sensor_model, a description of how the current world state is reflected
in the agent’s percepts
rules, a set of condition–action rules
action, the most recent action, initially none

state ← UPDATE-STATE(state, action, percept, transition_model, sensor_model)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION
return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world, using an internal model. It then chooses an action in the same way as the reflex agent.
function **BEST-FIRST-SEARCH**(problem, f) returns a solution node or failure

node ← NODE(\text{STATE}=\text{problem.INITIAL})
frontier ← a priority queue ordered by f, with node as an element
reached ← a lookup table, with one entry with key \text{problem.INITIAL} and value node

while \text{not IS-EMPTY}(frontier) do

 node ← \text{POP}(frontier)
 if \text{problem.IS-GOAL}(node.\text{STATE}) then return node

 for each child in EXPAND(problem, node) do
 s ← child.\text{STATE}
 if s is not in reached or child.\text{PATH-COST} < reached[s].\text{PATH-COST} then
 reached[s] ← child
 add child to frontier

 return failure

function **EXPAND**(problem, node) yields nodes

s ← node.\text{STATE}
for each action in problem.ACTIONS(s) do
 s' ← problem.RESULT(s, action)
 cost ← node.\text{PATH-COST} + problem.ACTION-COST(s, action, s')
 yield NODE(\text{STATE}=s', \text{PARENT}=node, \text{ACTION}=action, \text{PATH-COST}=cost)

Figure 3.7 The best-first search algorithm, and the function for expanding a node. The data structures used here are described in Section \text{??}. See Appendix B for yield.
function \textsc{Breadth-First-Search}(\textit{problem}) \textbf{returns} a solution node or \textit{failure}
\begin{verbatim}
node \leftarrow \textsc{Node}(\textit{problem}.\text{INITIAL})
if \textit{problem} is \textsc{Goal}(node.\text{STATE}) then return node
frontier \leftarrow \text{a FIFO queue, with } node \text{ as an element}
reached \leftarrow \{ \textit{problem}.\text{INITIAL} \}
\textbf{while not IS-EMPTY}(frontier) do
\hspace{1em} node \leftarrow \textsc{Pop}(frontier)
\hspace{1em} for each child in \textsc{Expand}(\textit{problem}, node) do
\hspace{2em} s \leftarrow \text{child.\text{STATE}}
\hspace{2em} if \textit{problem} is \textsc{Goal}(s) then return child
\hspace{2em} if \textsc{cutoff}(s) then add \textit{node} to \textit{frontier}
\hspace{2em} add \textit{s} to \textit{reached}
\hspace{2em} add \text{child} to \textit{frontier}
\textbf{return failure}
\end{verbatim}

function \textsc{Uniform-Cost-Search}(\textit{problem}) \textbf{returns} a solution node, or \textit{failure}
\begin{verbatim}
return \textsc{Best-First-Search}(\textit{problem}, \textsc{Path-Cost})
\end{verbatim}

Figure 3.9 Breadth-first search and uniform-cost search algorithms.

function \textsc{Iterative-Deepening-Search}(\textit{problem}) \textbf{returns} a solution node or \textit{failure}
\begin{verbatim}
\textbf{for} depth = 0 \textbf{to} \infty \textbf{do}
\hspace{1em} result \leftarrow \textsc{Depth-Limited-Search}(\textit{problem}, depth)
\hspace{1em} if result \neq \text{cutoff} \textbf{then return result}
\end{verbatim}

function \textsc{Depth-Limited-Search}(\textit{problem}, \ell) \textbf{returns} a node or \textit{failure} or \textit{cutoff}
\begin{verbatim}
frontier \leftarrow \text{a LIFO queue (stack) with } \textsc{Node}(\textit{problem}.\text{INITIAL}) \text{ as an element}
result \leftarrow \text{failure}
\textbf{while not IS-EMPTY}(frontier) do
\hspace{1em} node \leftarrow \textsc{Pop}(frontier)
\hspace{1em} if \textit{problem} is \textsc{Goal}(node.\text{STATE}) then return node
\hspace{1em} if \textsc{Depth}(node) > \ell \textbf{then}
\hspace{2em} result \leftarrow \text{cutoff}
\hspace{1em} else
\hspace{2em} if not \textsc{Is-Cycle}(node) do
\hspace{3em} for each child in \textsc{Expand}(\textit{problem}, node) do
\hspace{4em} add \textit{child} to \textit{frontier}
\hspace{1em} \textbf{return result}
\end{verbatim}

Figure 3.12 Iterative deepening and depth-limited tree-like search. Iterative deepening repeatedly applies depth-limited search with increasing limits. It returns one of three different types of values: either a solution node; or \textit{failure}, when it has exhausted all nodes and proved there is no solution at any depth; or \textit{cutoff}, to mean there might be a solution at a deeper depth than \ell. This is a tree-like search algorithm that does not keep track of \textit{reached} states, and thus uses much less memory than best-first search, but runs the risk of visiting the same state multiple times on different paths. Also, if the \textsc{Is-Cycle} check does not check all cycles, then the algorithm may get caught in a loop.
function BiBF-SEARCH(problem_F, f_F, problem_B, f_B) returns a solution node, or failure
node_F ← NODE(problem_F.INITIAL) // Node for a start state
node_B ← NODE(problem_B.INITIAL) // Node for a goal state
frontier_F ← a priority queue ordered by f_F, with node_F as an element
frontier_B ← a priority queue ordered by f_B, with node_B as an element
reached_F ← a lookup table, with one key node_F.STATE and value node_F
reached_B ← a lookup table, with one key node_B.STATE and value node_B
solution ← failure
while not TERMINATED(solution, frontier_F, frontier_B) do
 if f_F(TOP(frontier_F)) < f_B(TOP(frontier_B)) then
 solution ← PROCEED(F, problem_F frontier_F, reached_F, reached_B, solution)
 else solution ← PROCEED(B, problem_B, frontier_B, reached_B, reached_F, solution)
return solution

function PROCEED(dir, problem, frontier, reached, reached_2, solution) returns a solution
 // Expand node on frontier; check against the other frontier in reached_2.
 // The variable “dir” is the direction: either F for forward or B for backward.
 node ← POP(frontier)
for each child in EXPAND(problem, node) do
 s ← child.STATE
 if s not in reached or PATH-COST(child) < PATH-COST(reached[s]) then
 reached[s] ← child
 add child to frontier
 if s is in reached_2 then
 solution_2 ← JOIN-NODES(dir, child, reached_2[s])
 if PATH-COST(solution_2) < PATH-COST(solution) then
 solution ← solution_2
return solution

Figure 3.14 Bidirectional best-first search keeps two frontiers and two tables of reached states. When a path in one frontier reaches a state that was also reached in the other half of the search, the two paths are joined (by the function JOIN-NODES) to form a solution. The first solution we get is not guaranteed to be the best; the function TERMINATED determines when to stop looking for new solutions.
function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution or failure
 solution, fvalue ← RBFS(problem, NODE(problem.INITIAL), ∞)
 return solution

function RBFS(problem, node, f_limit) returns a solution or failure, and a new f-cost limit
 if problem.IS-GOAL(node.STATE) then return node
 successors ← LIST(EXPAND(node))
 if successors is empty then return failure, ∞
 for each s in successors do // update f with value from previous search
 s.f ← max(s.PATH-COST + h(s), node.f)
 while true do
 best ← the node in successors with lowest f-value
 if best.f > f_limit then return failure, best.f
 alternative ← the second-lowest f-value among successors
 result, best.f ← RBFS(problem, best, min(f_limit, alternative))
 if result ≠ failure then return result, best.f

Figure 3.22 The algorithm for recursive best-first search.
function HILL-CLIMBING(problem) returns a state that is a local maximum

\[\text{current} \leftarrow \text{problem.\text{INITIAL}} \]

while true do

\[\text{neighbor} \leftarrow \text{a highest-valued successor state of current} \]

if \(\text{VALUE(neighbor)} \leq \text{VALUE(current)} \) then return current

\[\text{current} \leftarrow \text{neighbor} \]

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search technique. At each step the current node is replaced by the best neighbor.

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

\[\text{current} \leftarrow \text{problem.\text{INITIAL}} \]

for \(t = 1 \) to \(\infty \) do

\[T \leftarrow \text{schedule}(t) \]

if \(T = 0 \) then return current

\[\text{next} \leftarrow \text{a randomly selected successor of current} \]

\[\Delta E \leftarrow \text{VALUE(current)} - \text{VALUE(next)} \]

if \(\Delta E > 0 \) then \(\text{current} \leftarrow \text{next} \)

else \(\text{current} \leftarrow \text{next} \) only with probability \(e^{-\Delta E/T} \)

Figure 4.4 The simulated annealing algorithm, a version of stochastic hill climbing where some downhill moves are allowed. The \text{schedule} input determines the value of the “temperature” \(T \) as a function of time.
function GENETIC-ALGORITHM(population, fitness) returns an individual
repeat
weights ← WEIGHTED-BY(population, fitness)
population2 ← empty list
for i = 1 to SIZE(population) do
parent1, parent2 ← WEIGHTED-RANDOM-CHOICES(population, weights, 2)
child ← REPRODUCE(parent1, parent2)
if (small random probability) then child ← MUTATE(child)
add child to population2
population ← population2
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to fitness

function REPRODUCE(parent1, parent2) returns an individual
n ← LENGTH(parent1)
c ← random number from 1 to n
return APPEND(SUBSTRING(parent1, 1, c), SUBSTRING(parent2, c + 1, n))

Figure 4.7 A genetic algorithm. Within the function, population is an ordered list of individuals, weights is a list of corresponding fitness values for each individual, and fitness is a function to compute these values.

function AND-OR-SEARCH(problem) returns a conditional plan, or failure
return OR-SEARCH(problem, problem.INITIAL, [])

function OR-SEARCH(problem, state, path) returns a conditional plan, or failure
if problem.IS-GOAL(state) then return the empty plan
if IS-CYCLE(path) then return failure
for each action in problem.ACTIONS(state) do
plan ← AND-SEARCH(problem, RESULTS(state, action), [state] + path)
if plan ≠ failure then return [action] + plan
return failure

function AND-SEARCH(problem, states, path) returns a conditional plan, or failure
for each s_i in states do
plan_i ← OR-SEARCH(problem, s_i, path)
if plan_i = failure then return failure
return [if s_1 then plan_1 else if s_2 then plan_2 else ... if s_{n-1} then plan_{n-1} else plan_n]

Figure 4.10 An algorithm for searching AND–OR graphs generated by nondeterministic environments. A solution is a conditional plan that considers every nondeterministic outcome and makes a plan for each one.
function **ONLINE-DFS-AGENT**(*problem, s'*) **returns** an action

 s, a, the previous state and action, initially null

persistent: result, a table mapping (s, a) to s', initially empty

 untried, a table mapping s to a list of untried actions

 unbacktracked, a table mapping s to a list of states never backtracked to

 if **problem.IS-GOAL**(*s*) **then** return **stop**

 if *s'* is a new state (not in untried) **then** untried[*s'*] ← **problem.ACTIONS**(*s'*)

 if *s* is not null **then**

 result[*s*, a] ← *s'*

 add *s* to the front of unbacktracked[*s'*]

 if untried[*s'*] is empty **then**

 if unbacktracked[*s'*] is empty **then** return **stop**

 else *a* ← an action *b* such that result[*s*, *b*] = **POP**(unbacktracked[*s'*])

 else *a* ← **POP**(untried[*s'*])

 return *a*

Figure 4.20 An online search agent that uses depth-first exploration. The agent can safely explore only in state spaces in which every action can be “undone” by some other action.

function **LRTA*-AGENT** (*problem, s', h*) **returns** an action

 s, a, the previous state and action, initially null

persistent: result, a table mapping (s, a) to s', initially empty

 H, a table mapping s to a cost estimate, initially empty

 if **IS-GOAL**(*s*) **then** return **stop**

 if *s'* is a new state (not in H) **then** H[*s'*] ← **h**(*s'*)

 if *s* is not null **then**

 result[*s*, a] ← *s'*

 H[*s*] ← \min_{*b* \in **ACTIONS**(*s*)} **LRTA*-COST**(*s, b, result[*s*, *b*], H)

 a ← argmin_{*b* \in **ACTIONS**(*s*)} **LRTA*-COST**(*problem, s', *b, result[*s', *b*], H)

 s ← *s'*

 return *a*

function **LRTA*-COST** (*problem, s, a, s', H*) **returns** a cost estimate

 if *s'* is undefined **then** return **h**(*s*)

 else return **problem.ACTION-COST**(*s, a, s'*) + H[*s'*]

Figure 4.23 LRTA*-AGENT selects an action according to the values of neighboring states, which are updated as the agent moves about the state space.
CHAPTER 5

ADVERSARIAL SEARCH AND GAMES

function Minimax-Search(game, state) returns an action
 player ← game.To-Move(state)
 value, move ← Max-Value(game, state)
 return move

function Max-Value(game, state) returns a (utility, move) pair
 if game.Is-Terminal(state) then return game.Utility(state, player), null
 v ← −∞
 for each a in game.Actions(state) do
 v2, a2 ← Min-Value(game, game.Result(state, a))
 if v2 > v then
 v, move ← v2, a
 return v, move

function Min-Value(game, state) returns a (utility, move) pair
 if game.Is-Terminal(state) then return game.Utility(state, player), null
 v ← +∞
 for each a in game.Actions(state) do
 v2, a2 ← Max-Value(game, game.Result(state, a))
 if v2 < v then
 v, move ← v2, a
 return v, move

Figure 5.3 An algorithm for calculating the optimal move using minimax—the move that leads to a terminal state with maximum utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state and the move to get there.
function ALPHA-BETA-SEARCH(game, state) returns an action
player ← game.TO-MOVE(state)
value, move ← MAX-VALUE(game, state, −∞, +∞)
return move

function MAX-VALUE(game, state, α, β) returns a (utility, move) pair
if game.IS-TERMIAL(state) then return game.UTILITY(state, player), null
v ← −∞
for each a in game.ACTIONS(state) do
v2, a2 ← MIN-VALUE(game, game.RESULT(state, a), α, β)
if v2 > v then
v, move ← v2, a
α ← MAX(α, v)
if v ≥ β then return v, move
return v, move

function MIN-VALUE(game, state, α, β) returns a (utility, move) pair
if game.IS-TERMIAL(state) then return game.UTILITY(state, player), null
v ← +∞
for each a in game.ACTIONS(state) do
v2, a2 ← MAX-VALUE(game, game.RESULT(state, a), α, β)
if v2 < v then
v, move ← v2, a
β ← MIN(β, v)
if v ≤ α then return v, move
return v, move

Figure 5.7 The alpha–beta search algorithm. Notice that these functions are the same as the MINIMAX-SEARCH functions in Figure 5.6, except that we maintain bounds in the variables α and β, and use them to cut off search when a value is outside the bounds.

function MONTE-CARLO-TREE-SEARCH(state) returns an action
tree ← NODE(state)
while IS-TIME-REMAINING() do
leaf ← SELECT(tree)
child ← EXPAND(leaf)
result ← SIMULATE(child)
BACK-PROPAGATE(result, child)
return the move in ACTIONS(state) whose node has highest number of playouts

Figure 5.11 The Monte Carlo tree search algorithm. A game tree, tree, is initialized, and then we repeat a cycle of SELECT / EXPAND / SIMULATE / BACK-PROPAGATE until we run out of time, and return the move that led to the node with the highest number of playouts.
function AC-3(*csp*) **returns** false if an inconsistency is found and true otherwise

queue ← a queue of arcs, initially all the arcs in *csp*

while *queue* is not empty **do**

(*X_i*, *X_j*) ← **POP**(queue)

if REVISE(*csp*, *X_i*, *X_j*) **then**

if size of *D_i* = 0 **then** return **false**

for each *X_k* in *X_i*.NEIGHBORS - {*X_j*} **do**

add (*X_k*, *X_i*) to *queue*

return **true**

function REVISE(*csp*, *X_i*, *X_j*) **returns** true iff we revise the domain of *X_i*

revised ← **false**

for each *x* in *D_i* **do**

if no value *y* in *D_j* allows (*x*, *y*) to satisfy the constraint between *X_i* and *X_j* **then**

delete *x* from *D_i*

revised ← **true**

return *revised*

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be solved. The name “AC-3” was used by the algorithm’s inventor (?) because it was the third version developed in the paper.
function BACKTRACKING-SEARCH(csp) returns a solution or failure
 return BACKTRACK(csp, { })

function BACKTRACK(csp, assignment) returns a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)
 for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
 if value is consistent with assignment then
 add { var = value } to assignment
 inferences ← INERENCE(csp, var, assignment)
 if inferences ≠ failure then
 result ← BACKTRACK(csp, assignment)
 if result ≠ failure then return result
 remove inferences from csp
 remove { var = value } from assignment
 return failure

Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The algorithm is modeled on the recursive depth-first search of Chapter ???. The functions SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES, implement the general-purpose heuristics discussed in Section ???. The INERENCE function can optionally impose arc-, path-, or k-consistency, as desired. If a value choice leads to failure (noticed either by INERENCE or by BACKTRACK), then value assignments (including those made by INERENCE) are retracted and a new value is tried.

function MIN-CONFLICTS(csp, max_steps) returns a solution or failure
 inputs: csp, a constraint satisfaction problem
 max_steps, the number of steps allowed before giving up
 current ← an initial complete assignment for csp
 for i = 1 to max_steps do
 if current is a solution for csp then return current
 var ← a randomly chosen conflicted variable from csp.VARIABLES
 value ← the value v for var that minimizes CONFLICTS(csp, var, v, current)
 set var = value in current
 return failure

Figure 6.9 The MIN-CONFLICTS local search algorithm for CSPs. The initial state may be chosen randomly or by a greedy assignment process that chooses a minimal-conflict value for each variable in turn. The CONFLICTS function counts the number of constraints violated by a particular value, given the rest of the current assignment.
function \textsc{Tree-Csp-Solver}(csp) returns a solution, or failure

inputs: csp, a CSP with components X, D, C

$n \leftarrow$ number of variables in X
assignment \leftarrow an empty assignment
root \leftarrow any variable in X
$X \leftarrow \text{TopologicalSort}(X, \text{root})$

for $j = n$ down to 2 do
 \text{Make-Arc-Consistent}($\text{Parent}(X_j), X_j$)
 if it cannot be made consistent then return failure

for $i = 1$ to n do
 assignment[X_i] \leftarrow any consistent value from D_i
 if there is no consistent value then return failure

return assignment

Figure 6.11 The \textsc{Tree-Csp-Solver} algorithm for solving tree-structured CSPs. If the CSP has a solution, we will find it in linear time; if not, we will detect a contradiction.
function KB-AGENT(percept) returns an action

persistent: KB, a knowledge base
 t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action ← ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t ← t + 1
return action

Figure 7.1 A generic knowledge-based agent. Given a percept, the agent adds the percept to its knowledge base, asks the knowledge base for the best action, and tells the knowledge base that it has in fact taken that action.
function TT-ENTAILS?(KB, α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
 α, the query, a sentence in propositional logic

symbols ← a list of the proposition symbols in KB and α
return TT-CHECK-ALL(KB, α, symbols, {})

function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
if EMPTY?(symbols) then
 if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
 else return true // when KB is false, always return true
else
 P ← FIRST(symbols)
 rest ← REST(symbols)
 return (TT-CHECK-ALL(KB, α, rest, model ∪ {P = true})
 and
 TT-CHECK-ALL(KB, α, rest, model ∪ {P = false}))

Figure 7.10 A truth-table enumeration algorithm for deciding propositional entailment. (TT stands for truth table.) PL-TRUE? returns true if a sentence holds within a model. The variable model represents a partial model—an assignment to some of the symbols. The keyword and here is an infix function symbol in the pseudocode programming language, not an operator in propositional logic; it takes two arguments and returns true or false.

function PL-RESOLUTION(KB, α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
 α, the query, a sentence in propositional logic

clauses ← the set of clauses in the CNF representation of KB ∧ ¬α
new ← {}
while true do
 for each pair of clauses C_i, C_j in clauses do
 resolvents ← PL-RESOLVE(C_i, C_j)
 if resolvents contains the empty clause then return true
 new ← new ∪ resolvents
 if new ⊆ clauses then return false
 clauses ← clauses ∪ new

Figure 7.13 A simple resolution algorithm for propositional logic. PL-RESOLVE returns the set of all possible clauses obtained by resolving its two inputs.
function PL-FC-ENTAILS?(KB, q) returns true or false
inputs: KB, the knowledge base, a set of propositional definite clauses
 q, the query, a proposition symbol

 count ← a table, where count[c] is initially the number of symbols in clause c’s premise
 inferred ← a table, where inferred[s] is initially false for all symbols
 queue ← a queue of symbols, initially symbols known to be true in KB

while queue is not empty do
 p ← POP(queue)
 if p = q then return true
 if inferred[p] = false then
 inferred[p] ← true
 for each clause c in KB where p is in c.PREmise do
 decrement count[c]
 if count[c] = 0 then add c.CONCLUSION to queue
 return false

Figure 7.15 The forward-chaining algorithm for propositional logic. The agenda keeps track of symbols known to be true but not yet “processed.” The count table keeps track of how many premises of each implication are not yet proven. Whenever a new symbol p from the agenda is processed, the count is reduced by one for each implication in whose premise p appears (easily identified in constant time with appropriate indexing.) If a count reaches zero, all the premises of the implication are known, so its conclusion can be added to the agenda. Finally, we need to keep track of which symbols have been processed; a symbol that is already in the set of inferred symbols need not be added to the agenda again. This avoids redundant work and prevents loops caused by implications such as P ⇒ Q and Q ⇒ P.
function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

classes \leftarrow the set of clauses in the CNF representation of s
symbols \leftarrow a list of the proposition symbols in s
return DPLL((classes, symbols, {}))

function DPLL$(clauses, symbols, model)$ returns true or false
if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
$P, value \leftarrow$ FIND-PURE-SYMBOL$(symbols, clauses, model)$
if P is non-null then return DPLL$(clauses, symbols - P, model \cup \{ P=value \})$
$P, value \leftarrow$ FIND-UNIT-CLAUSE$(clauses, model)$
if P is non-null then return DPLL$(clauses, symbols - P, model \cup \{ P=value \})$
$P \leftarrow$ FIRST$(symbols)$; rest \leftarrow REST$(symbols)$
return DPLL$(clauses, rest, model \cup \{ P=true \})$ or
DPLL$(clauses, rest, model \cup \{ P=false \})$

Figure 7.17 The DPLL algorithm for checking satisfiability of a sentence in propositional logic. The ideas behind FIND-PURE-SYMBOL and FIND-UNIT-CLAUSE are described in the text; each returns a symbol (or null) and the truth value to assign to that symbol. Like TT-ENTAILS?, DPLL operates over partial models.

function WALKSAT$(clauses, p, max_flips)$ returns a satisfying model or failure
inputs: $clauses$, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move, typically around 0.5
max_flips, number of value flips allowed before giving up

model \leftarrow a random assignment of true/false to the symbols in $clauses$
for each $i = 1$ to max_flips
do
if model satisfies clauses then return model
clause \leftarrow a randomly selected clause from clauses that is false in model
if RANDOM$(0, 1) \leq p$ then
flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

Figure 7.18 The WALKSAT algorithm for checking satisfiability by randomly flipping the values of variables. Many versions of the algorithm exist.
function HYBRID-WUMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench, breeze, glitter, bump, scream]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics”
t, a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
TELL the KB the temporal “physics” sentences for time t

safe ← \{[x, y] : ASK(KB, OK^t_{x,y}) = true\}

if ASK(KB, Glitter^t) = true then
plan ← (Grab) + PLAN-ROUTE(current, \{[1,1]\}, safe) + [Climb]

if plan is empty then
unvisited ← \{[x, y] : ASK(KB, L^t_{x,y}) = false for all t' ≤ t\}
plan ← PLAN-ROUTE(current, unvisited ∩ safe, safe)

if plan is empty and ASK(KB, HaveArrow^t) = true then
possible_wumpus ← \{[x, y] : ASK(KB, ¬ W_{x,y}) = false\}
plan ← PLAN-SHOT(current, possible_wumpus, safe)

if plan is empty then // no choice but to take a risk
not_unsafe ← \{[x, y] : ASK(KB, ¬ OK^t_{x,y}) = false\}
plan ← PLAN-ROUTE(current, unvisited ∩ not_unsafe, safe)

if plan is empty then
plan ← PLAN-ROUTE(current, \{[1,1]\}, safe) + [Climb]
action ← POP(plan)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t ← t + 1
return action

function PLAN-ROUTE(current,goals,allowed) returns an action sequence
inputs: current, the agent’s current position
goals, a set of squares; try to plan a route to one of them
allowed, a set of squares that can form part of the route

problem ← ROUTE-PROBLEM(current,goals,allowed)
return SEARCH(problem) // Any search algorithm from Chapter ??

Figure 7.20 A hybrid agent program for the wumpus world. It uses a propositional knowledge base to infer the state of the world, and a combination of problem-solving search and domain-specific code to choose actions. Each time HYBRID-WUMPUS-AGENT is called, it adds the percept to the knowledge base, and then either relies on a previously-defined plan or creates a new plan, and pops off the first step of the plan as the action to do next.
The SATPLAN algorithm. The planning problem is translated into a CNF sentence in which the goal is asserted to hold at a fixed time step t and axioms are included for each time step up to t. If the satisfiability algorithm finds a model, then a plan is extracted by looking at those proposition symbols that refer to actions and are assigned true in the model. If no model exists, then the process is repeated with the goal moved one step later.
CHAPTER 8

FIRST-ORDER LOGIC
function `UNIFY(x, y, θ=empty)` returns a substitution to make `x` and `y` identical, or `failure`

if `θ = failure` then return `failure`
else if `x = y` then return `θ`
else if `VARIABLE?(x)` then return `UNIFY-VAR(x, y, θ)`
else if `VARIABLE?(y)` then return `UNIFY-VAR(y, x, θ)`
else if `COMPOUND?(x) and COMPOUND?(y)` then
 return `UNIFY(ARGS(x), ARGS(y), UNIFY(OP(x), OP(y), θ))`
else if `LIST?(x) and LIST?(y)` then
 return `UNIFY(REST(x), REST(y), UNIFY(FIRST(x), FIRST(y), θ))`
else return `failure`

function `UNIFY-VAR(var, x, θ)` returns a substitution

if `{var/val} ∈ θ` for some `val` then return `UNIFY(val, x, θ)`
else if `{x/val} ∈ θ` for some `val` then return `UNIFY(var, val, θ)`
else if `OCCUR-CHECK?(var, x)` then return `failure`
else return add `{var/x}` to `θ`

Figure 9.1 The unification algorithm. The arguments `x` and `y` can be any expression: a constant or variable, or a compound expression such as a complex sentence or term, or a list of expressions. The argument `θ` is a substitution, initially the empty substitution, but with `{var/val}` pairs added to it as we recurse through the inputs, comparing the expressions element by element. In a compound expression such as `F(A, B)`, `OP(x)` field picks out the function symbol `F` and `ARGS(x)` field picks out the argument list `(A, B)`.
function FOL-FC-ASK(KB, α) returns a substitution or false

inputs: KB, the knowledge base, a set of first-order definite clauses
 α, the query, an atomic sentence

while true do
 new ← {} // The set of new sentences inferred on each iteration
 for each rule in KB do
 (p₁ ∧ ... ∧ pₙ ⇒ q) ← STANDARDIZE-VARIABLES(rule)
 for each θ such that SUBST(θ, p₁ ∧ ... ∧ pₙ) = SUBST(θ, p’₁ ∧ ... ∧ p’ₙ)
 for some p’₁, ..., p’ₙ in KB
 q’ ← SUBST(θ, q)
 if q’ does not unify with some sentence already in KB or new then
 add q’ to new
 φ ← UNIFY(q’, α)
 if φ is not failure then return φ
 if new = {} then return false
 add new to KB

Figure 9.3 A conceptually straightforward, but inefficient, forward-chaining algorithm. On each iteration, it adds to KB all the atomic sentences that can be inferred in one step from the implication sentences and the atomic sentences already in KB. The function STANDARDIZE-VARIABLES replaces all variables in its arguments with new ones that have not been used before.

function FOL-BC-ASK(KB, query) returns a generator of substitutions
return FOL-BC-OR(KB, query, {})
procedure APPEND(ax, y, az, continuation)

trail ← GLOBAL-TRAIL-POINTER()
if ax = [] and UNIFY(y, az) then CALL(continuation)
RESET-TRAIL(trail)
a, x, z ← NEW-VARIABLE(), NEW-VARIABLE(), NEW-VARIABLE()
if UNIFY(ax, [a] + x) and UNIFY(az, [a | z]) then APPEND(x, y, z, continuation)

Figure 9.8 Pseudocode representing the result of compiling the Append predicate. The function NEW-VARIABLE returns a new variable, distinct from all other variables used so far. The procedure CALL(continuation) continues execution with the specified continuation.
Init(At(C₁, SFO) ∧ At(C₂, JFK) ∧ At(P₁, SFO) ∧ At(P₂, JFK) ∧ Cargo(C₁) ∧ Cargo(C₂) ∧ Plane(P₁) ∧ Plane(P₂) ∧ Airport(JFK) ∧ Airport(SFO))
Goal(At(C₁, JFK) ∧ At(C₂, SFO))

Action(Load(c, p, a),
 PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
 EFFECT: ¬ At(c, a) ∧ In(c, p))

Action(Unload(c, p, a),
 PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
 EFFECT: At(c, a) ∧ ¬ In(c, p))

Action(Fly(p, from, to),
 PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
 EFFECT: ¬ At(p, from) ∧ At(p, to))

Figure 11.1 A PDDL description of an air cargo transportation planning problem.

Init(Tire(Flat) ∧ Tire(Spare) ∧ At(Flat, Axle) ∧ At(Spare, Trunk))
Goal(At(Spare, Axle))
Action(Remove(obj, loc),
 PRECOND: At(obj, loc)
 EFFECT: ¬ At(obj, loc) ∧ At(obj, Ground))
Action(PutOn(t, Axle),
 PRECOND: Tire(t) ∧ At(t, Ground) ∧ ¬ At(Flat, Axle) ∧ ¬ At(Spare, Axle)
 EFFECT: ¬ At(t, Ground) ∧ At(t, Axle))
Action(LeaveOvernight,
 PRECOND:
 EFFECT: ¬ At(Spare, Ground) ∧ ¬ At(Spare, Axle) ∧ ¬ At(Spare, Trunk) ∧ ¬ At(Flat, Axle) ∧ ¬ At(Flat, Trunk))

Figure 11.2 The simple spare tire problem.
\[
\begin{align*}
\text{Init} & : (On(A, Table) \land On(B, Table) \land On(C, A) \\
& \land Block(A) \land Block(B) \land Block(C) \land Clear(B) \land Clear(C) \land Clear(Table)) \\
\text{Goal} & : (On(A, B) \land On(B, C)) \\
\text{Action} & : \text{Move} (b, x, y), \\
& \text{PRECOND: } On(b, x) \land Clear(b) \land Clear(y) \land Block(b) \land Block(y) \land \\
& (b \neq x) \land (b \neq y) \land (x \neq y), \\
& \text{EFFECT: } On(b, y) \land Clear(x) \land \neg On(b, x) \land \neg Clear(y)) \\
\text{Action} & : \text{MoveToTable} (b, x), \\
& \text{PRECOND: } On(b, x) \land Clear(b) \land Block(b) \land Block(x), \\
& \text{EFFECT: } On(b, Table) \land Clear(x) \land \neg On(b, x)) \\
\end{align*}
\]

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One solution is the sequence \([\text{MoveToTable}(C, A), \text{Move}(B, Table, C), \text{Move}(A, Table, B)]\).

\[
\begin{align*}
\text{Refinement} & : \text{Go(Home, SFO)}, \\
& \text{STEPS: } [\text{Drive(Home, SFOLongTermParking)}, \\
& \quad \text{Shuttle(SFOLongTermParking, SFO)}] \\
\text{Refinement} & : \text{Go(Home, SFO)}, \\
& \text{STEPS: } [\text{Taxi(Home, SFO)}] \\
\text{Refinement} & : \text{Navigate}([a, b], [x, y]), \\
& \text{PRECOND: } a = x \land b = y \\
& \text{STEPS: } [] \\
\text{Refinement} & : \text{Navigate}([a, b], [x, y]), \\
& \text{PRECOND: } \text{Connected}([a, b], [a - 1, b]) \\
& \text{STEPS: } [\text{Left, Navigate}([a - 1, b], [x, y])] \\
\text{Refinement} & : \text{Navigate}([a, b], [x, y]), \\
& \text{PRECOND: } \text{Connected}([a, b], [a + 1, b]) \\
& \text{STEPS: } [\text{Right, Navigate}([a + 1, b], [x, y])] \\
\end{align*}
\]

Figure 11.7 Definitions of possible refinements for two high-level actions: going to San Francisco airport and navigating in the vacuum world. In the latter case, note the recursive nature of the refinements and the use of preconditions.
function HIERARCHICAL-SEARCH(problem, hierarchy) returns a solution or failure

frontier ← a FIFO queue with [Act] as the only element
while true do
 if IS-EMPTY(frontier) then return failure
 plan ← POP(frontier) // chooses the shallowest plan in frontier
 hla ← the first HLA in plan, or null if none
 prefix, suffix ← the action subsequences before and after hla in plan
 outcome ← RESULT(problem.INITIAL, prefix)
 if hla is null then // so plan is primitive and outcome is its result
 if problem.IS-GOAL(outcome) then return plan
 else for each sequence in REFINEMENTS(hla, outcome, hierarchy) do
 add APPEND(prefix, sequence, suffix) to frontier

Figure 11.8 A breadth-first implementation of hierarchical forward planning search. The initial plan supplied to the algorithm is [Act]. The REFINEMENTS function returns a set of action sequences, one for each refinement of the HLA whose preconditions are satisfied by the specified state, outcome.
function ANGELIC-SEARCH(problem, hierarchy, initialPlan) returns solution or fail

frontier ← a FIFO queue with initialPlan as the only element
while true do
 if EMPTY?(frontier) then return fail
 plan ← POP(frontier) /\ chooses the shallowest node in frontier
 if REACH+(problem.INITIAL, plan) intersects problem.GOAL then
 if plan is primitive then return plan /\ REACH+ is exact for primitive plans
 guaranteed ← REACH−(problem.INITIAL, plan) \ intersection problem.GOAL
 if guaranteed≠{} and MAKING-PROGRESS(plan, initialPlan) then
 finalState ← any element of guaranteed
 return DECOMPOSE(hierarchy, problem.INITIAL, plan, finalState)
 hla ← some HLA in plan
 prefix, suffix ← the action subsequences before and after hla in plan
 outcome ← RESULT(problem.INITIAL, prefix)
 for each sequence in REFINEMENTS(hla, outcome, hierarchy) do
 frontier ← Insert(APPEND(prefix, sequence, suffix), frontier)

function DECOMPOSE(hierarchy, s0, plan, sf) returns a solution

solution ← an empty plan
while plan is not empty do
 action ← REMOVE-LAST(plan)
 s_i ← a state in REACH−(s0, plan) such that sf∈REACH−(s_i, action)
 problem ← a problem with INITIAL = s_i and GOAL = sf
 solution ← APPEND(ANGELIC-SEARCH(problem, hierarchy, action), solution)
 sf ← s_i
return solution

Figure 11.11 A hierarchical planning algorithm that uses angelic semantics to identify and commit to high-level plans that work while avoiding high-level plans that don’t. The predicate MAKING-PROGRESS checks to make sure that we aren’t stuck in an infinite regression of refinements. At top level, call ANGELIC-SEARCH with [Act] as the initialPlan.
Jobs\{AddEngine1 \prec AddWheels1 \prec Inspect1\},
\{AddEngine2 \prec AddWheels2 \prec Inspect2\}\}

Resources(EngineHoists(1), WheelStations(1), Inspectors(e2), LugNuts(500))

Action(AddEngine1, DURATION:30,
USE:EngineHoists(1))
Action(AddEngine2, DURATION:60,
USE:EngineHoists(1))
Action(AddWheels1, DURATION:30,
CONSUME:LugNuts(20), USE:WheelStations(1))
Action(AddWheels2, DURATION:15,
CONSUME:LugNuts(20), USE:WheelStations(1))
Action(Inspect, DURATION:10,
USE:Inspectors(1))

Figure 11.13 A job-shop scheduling problem for assembling two cars, with resource constraints. The notation $A \prec B$ means that action A must precede action B.
function DT-AGENT(*percept*) **returns** an *action*

persistent: belief_state, probabilistic beliefs about the current state of the world

action, the agent’s action

update belief_state based on *action* and *percept*
calculate outcome probabilities for actions,
given action descriptions and current belief_state
select *action* with highest expected utility
given probabilities of outcomes and utility information

return *action*

Figure 12.1 A decision-theoretic agent that selects rational actions.
function **ENUMERATION-ASK**(X, e, bn) returns a distribution over X

inputs: X, the query variable
e, observed values for variables E
bn, a Bayes net with variables vars

Q(X) ← a distribution over X, initially empty

for each value xi of X do
 Q(xi) ← ENUMERATE-ALL(vars, exi)
 where exi is e extended with X = xi
return NORMALIZE(Q(X))

function **ENUMERATE-ALL**(vars, e) returns a real number

if EMPTY?(vars) then return 1.0

V ← FIRST(vars)

if V is an evidence variable with value v in e
 then return \(P(v | \text{parents}(V)) \times \text{ENUMERATE-ALL} (\text{REST}(vars), e) \)
else return \(\sum_v P(v | \text{parents}(V)) \times \text{ENUMERATE-ALL} (\text{REST}(vars), e_v) \)
where e_v is e extended with V = v

Figure 13.11 The enumeration algorithm for exact inference in Bayes nets.

function **ELIMINATION-ASK**(X, e, bn) returns a distribution over X

inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables vars

factors ← []

for each V in ORDER(vars) do
 factors ← [MAKE-FACTOR(V, e)] + factors
 if V is a hidden variable then factors ← SUM-OUT(V, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))

Figure 13.13 The variable elimination algorithm for exact inference in Bayes nets.
function \textsc{Prior-Sample}(bn) returns an event sampled from the prior specified by \(bn \)

inputs: \(bn \), a Bayesian network specifying joint distribution \(P(X_1, \ldots, X_n) \)

\(x \leftarrow \) an event with \(n \) elements

\text{for each} \(X_i \ \text{in} \ X_1, \ldots, X_n \ \text{do} \)

\(x[i] \leftarrow \) a random sample from \(P(X_i | \text{parents}(X_i)) \)

\text{return} \(x \)

\textbf{Figure 13.16} A sampling algorithm that generates events from a Bayesian network. Each variable is sampled according to the conditional distribution given the values already sampled for the variable’s parents.

function \textsc{Rejection-Sampling}(X, e, bn, N) returns an estimate of \(P(X | e) \)

inputs: \(X \), the query variable

\(e \), observed values for variables \(E \)

\(bn \), a Bayesian network

\(N \), the total number of samples to be generated

local variables: \(C \), a vector of counts for each value of \(X \), initially zero

\text{for} \(j = 1 \ \text{to} \ N \ \text{do} \)

\(x \leftarrow \text{Prior-Sample}(bn) \)

\text{if} \(x \) is consistent with \(e \) \text{then} \(C[j] \leftarrow C[j] + 1 \) \text{where} \(x_j \) \text{is the value of} \(X \) \text{in} \(x \)

\text{return} \(\text{Normalize}(C) \)

\textbf{Figure 13.17} The rejection-sampling algorithm for answering queries given evidence in a Bayesian network.
function **LIKELIHOOD-WEIGHTING**(*X*, *e*, *bn*, *N*) returns an estimate of \(P(X | e) \)

inputs:
- *X*, the query variable
- *e*, observed values for variables *E*
- *bn*, a Bayesian network specifying joint distribution \(P(X_1, \ldots, X_n) \)
- *N*, the total number of samples to be generated

local variables:
- *W*, a vector of weighted counts for each value of *X*, initially zero

for *j* = 1 to *N*

 x, w ← **WEIGHTED-SAMPLE**(*bn*, *e*)

 \(W[j] \leftarrow W[j] + w \) where \(x_j \) is the value of *X* in *x*

return **NORMALIZE**(*W*)

function **WEIGHTED-SAMPLE**(*bn*, *e*) returns an event and a weight

w ← 1; x ← an event with *n* elements, with values fixed from *e*

for *i* = 1 to *n*

 if *X_i* is an evidence variable with value \(x_{ij} \) in *e*

 then \(w \leftarrow w \times P(X_i = x_{ij} | \text{parents}(X_i)) \)

 else \(x[i] \leftarrow \) a random sample from \(P(X_i | \text{parents}(X_i)) \)

return *x*, *w*

Figure 13.18 The likelihood-weighting algorithm for inference in Bayesian networks. In **WEIGHTED-SAMPLE**, each nonevidence variable is sampled according to the conditional distribution given the values already sampled for the variable’s parents, while a weight is accumulated based on the likelihood for each evidence variable.

function **GIBBS-ASK**(*X*, *e*, *bn*, *N*) returns an estimate of \(P(X | e) \)

local variables:
- *C*, a vector of counts for each value of *X*, initially zero
- *Z*, the nonevidence variables in *bn*
- *x*, the current state of the network, initialized from *e*

initialize *x* with random values for the variables in *Z*

for *k* = 1 to *N*

 choose any variable *Z_i* from *Z* according to any distribution \(\rho(i) \)

 set the value of *Z_i* in *x* by sampling from \(P(Z_i | \text{mb}(Z_i)) \)

 \(C[j] \leftarrow C[j] + 1 \) where \(x_j \) is the value of *X* in *x*

return **NORMALIZE**(*C*)

Figure 13.20 The Gibbs sampling algorithm for approximate inference in Bayes nets; this version chooses variables at random, but cycling through the variables but also works.
function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions

inputs: ev, a vector of evidence values for steps 1, ..., t
 prior, the prior distribution on the initial state, P(X_0)

local variables:fv, a vector of forward messages for steps 0, ..., t
 b, a representation of the backward message, initially all 1s
 sv, a vector of smoothed estimates for steps 1, ..., t

fv[0] ← prior
for i = 1 to t do
 fv[i] ← FORWARD(fv[i - 1], ev[i])
for i = t down to 1 do
 sv[i] ← NORMALIZE(fv[i] × b)
 b ← BACKWARD(b, ev[i])
return sv

Figure 14.4 The forward–backward algorithm for smoothing: computing posterior probabilities of a sequence of states given a sequence of observations. The FORWARD and BACKWARD operators are defined by Equations (??) and (??), respectively.
function FIXED-LAG-SMOOTHING(eₜ, hmm, d) returns a distribution over Xₜ₋ₐ
inputs: eₜ, the current evidence for time step t
 hmm, a hidden Markov model with S × S transition matrix T
 d, the length of the lag for smoothing
persistent: t, the current time, initially 1
 f, the forward message P(Xₜ | e₁:ₜ), initially hmm.PRIOR
 B, the d-step backward transformation matrix, initially the identity matrix
 eₜ₋ₐ, double-ended list of evidence from t − d to t, initially empty
local variables: Oₜ₋ₐ, Oₜ, diagonal matrices containing the sensor model information

add eₜ to the end of eₜ₋ₐ
Oₜ ← diagonal matrix containing P(eₜ | Xₜ)
if t > d then
 f ← FORWARD(f, eₜ₋ₐ)
 remove eₜ₋ₐ₋₁ from the beginning of eₜ₋ₐ
 Oₜ₋ₐ ← diagonal matrix containing P(eₜ₋ₐ | Xₜ₋ₐ)
 B ← O₋¹ₜ₋ₐ T₋¹ₒ BTOₜ
else B ← BTOₜ

Figure 14.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as an online algorithm that outputs the new smoothed estimate given the observation for a new time step. Notice that the final output NORMALIZE(f × B1) is just α f × b, by Equation (??).

function PARTICLE-FILTERING(e, N, dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence
 N, the number of samples to be maintained
 dbn, a DBN defined by P(X₀), P(X₁ | X₀), and P(E₁ | X₁)
persistent: S, a vector of samples of size N, initially generated from P(X₀)
local variables: W, a vector of weights of size N

for i = 1 to N do
 S[i] ← sample from P(X₁ | X₀ = S[i]) // step 1
 W[i] ← P(e | X₁ = S[i]) // step 2
S ← WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S, W) // step 3
return S

Figure 14.17 The particle filtering algorithm implemented as a recursive update operation with state (the set of samples). Each of the sampling operations involves sampling the relevant slice variables in topological order, much as in PRIOR-SAMPLE. The WEIGHTED-SAMPLE-WITH-REPLACEMENT operation can be implemented to run in O(N) expected time. The step numbers refer to the description in the text.
CHAPTER 15

PROBABILISTIC PROGRAMMING

type Researcher, Paper, Citation
random String Name(Researcher)
random String Title(Paper)
random Paper PubCited(Citation)
random String Text(Citation)
random Boolean Professor(Researcher)
origin Researcher Author(Paper)

#Researcher ~ OM(3, 1)
Name(r) ~ NamePrior()
Professor(r) ~ Boolean(0.2)
#Paper(Author = r) ~ if Professor(r) then OM(1.5, 0.5) else OM(1, 0.5)
Title(p) ~ PaperTitlePrior()
CitedPaper(c) ~ UniformChoice({Paper p})
Text(c) ~ HMMGrammar(Name(Author(CitedPaper(c))), Title(CitedPaper(c)))

Figure 15.5 An OUPM for citation information extraction. For simplicity the model assumes one author per paper and omits details of the grammar and error models.
A simplified version of the NET-VISA model (see text).

Figure 15.6 A simplified version of the NET-VISA model (see text).

```plaintext
#SeismicEvents ~ Poisson(T * \lambda_e)
Time(e) ~ UniformReal(0, T)
EarthQuake(e) ~ Boolean(0.999)
Location(e) ~ if Earthquake(e) then SpatialPrior() else UniformEarth()
Depth(e) ~ if Earthquake(e) then UniformReal(0, 700) else Exactly(0)
Magnitude(e) ~ Exponential(log(10))
Detected(e, p, s) ~ Logistic(weights(s, p), Magnitude(e), Depth(e), Dist(e, s))
#Detecteds(site = s) ~ Poisson(T * \lambda_f(s))
#Detecteds(event = e, phase = p, station = s) = if Detected(e, p, s) then 1 else 0
OnsetTime(a, s) if (event(a) = null) then ~ UniformReal(0, T)
else = Time(event(a)) + GeoTT(Dist(event(a), s), Depth(event(a)), phase(a))
+ Laplace(\mu_t(s), \sigma_t(s))
Amplitude(a, s) if (event(a) = null) then ~ NoiseAmpModel(s)
else = AmpModel(Magnitude(event(a)), Dist(event(a), s), Depth(event(a)), phase(a))
Azimuth(a, s) if (event(a) = null) then ~ UniformReal(0, 360)
else = GeoAzimuth(Location(event(a)), Depth(event(a)), phase(a), Site(s))
+ Laplace(0, \sigma_o(s))
Slowness(a, s) if (event(a) = null) then ~ UniformReal(0, 20)
else = GeoSlowness(Location(event(a)), Depth(event(a)), phase(a), Site(s))
+ Laplace(0, \sigma_s(s))
ObservedPhase(a, s) ~ CategoricalPhaseModel(phase(a))
```

```plaintext
#Aircraft(EntryTime = t) ~ Poisson(\lambda_a)
Exits(a, t) ~ if InFlight(a, t) then Boolean(\alpha_e)
InFlight(a, t) = (t = EntryTime(a)) \lor (InFlight(a, t - 1) \land \neg Exits(a, t - 1))
X(a, t) ~ if t = EntryTime(a) then InitX()
else if InFlight(a, t) then_NV(FX(a, t - 1), \Sigma_z)
#Blip(Source = a, Time = t) ~ if InFlight(a, t) then Bernoulli(DetectionProb(X(a, t)))
#Blip(Time = t) ~ Poisson(\lambda_f)
Z(b) ~ if Source(b) = null then UniformZ(R) else_NV(HX(Source(b), Time(b)), \Sigma_z)
```

Figure 15.9 An OUPM for radar tracking of multiple targets with false alarms, detection failure, and entry and exit of aircraft. The rate at which new aircraft enter the scene is \lambda_a, while the probability per time step that an aircraft exits the scene is \alpha_e. False alarm blips (i.e., ones not produced by an aircraft) appear uniformly in space at a rate of \lambda_f per time step. The probability that an aircraft is detected (i.e., produces a blip) depends on its current position.
function `GENERATE-IMAGE()` returns an image with some letters
 `letters ← GENERATE-LETTERS(10)`
 return `RENDER-NOISY-IMAGE(letters, 32, 128)`

function `GENERATE-LETTERS(λ)` returns a vector of letters
 `n ∼ Poisson(λ)`
 `letters ← []`
 for `i = 1` to `n` do
 `letters[i] ∼ UniformChoice({a, b, c, ⋯})`
 return `letters`

function `RENDER-NOISY-IMAGE(letters, width, height)` returns a noisy image of the letters
 `clean_image ← RENDER(letters, width, height, text_top = 10, text_left = 10)`
 `noisy_image ← []`
 `noise_variance ∼ UniformReal(0.1, 1)`
 for `row = 1` to `width` do
 for `col = 1` to `height` do
 `noisy_image[row, col] ∼ N(clean_image[row, col], noise_variance)`
 return `noisy_image`

Figure 15.11 Generative program for an open-universe probability model for optical character recognition. The generative program produces degraded images containing sequences of letters by generating each sequence, rendering it into a 2D image, and incorporating additive noise at each pixel.

function `GENERATE-MARKOV-LETTERS(λ)` returns a vector of letters
 `n ∼ Poisson(λ)`
 `letters ← []`
 `letter_probs ← MARKOV-INITIAL()`
 for `i = 1` to `n` do
 `letters[i] ∼ Categorical(letter_probs)`
 `letter_probs ← MARKOV-TRANSITION(letters[i])`
 return `letters`

Figure 15.15 Generative program for an improved optical character recognition model that generates letters according to a letter bigram model whose pairwise letter frequencies are estimated from a list of English words.
MAKING SIMPLE DECISIONS

function INFORMATION-GATHERING-AGENT(\textit{percept}) \textbf{returns} an \textit{action}

\textbf{persistent:} \textit{D}, a decision network

integrate \textit{percept} into \textit{D}

\(j \leftarrow \) the value that maximizes \(VPI(E_j) / C(E_j) \)

\textbf{if} \(VPI(E_j) > C(E_j) \)

\textbf{then return} \textit{Request}(E_j)

\textbf{else return} the best action from \textit{D}

\textbf{Figure 16.9} Design of a simple, myopic information-gathering agent. The agent works by repeatedly selecting the observation with the highest information value, until the cost of the next observation is greater than its expected benefit.
function \textsc{Value-Iteration}(mdp, \epsilon) \textbf{returns} a utility function
\begin{itemize}
\item \textbf{inputs:} mdp, an MDP with states \(S \), actions \(A(s) \), transition model \(P(s' \mid s, a) \),
\item \text{rewards} \(R(s, a, s') \), discount \(\gamma \)
\item \(\epsilon \), the maximum error allowed in the utility of any state
\end{itemize}
\begin{itemize}
\item \textbf{local variables:} \(U, U' \), vectors of utilities for states in \(S \), initially zero
\item \(\delta \), the maximum relative change in the utility of any state
\end{itemize}
\begin{enumerate}
\item \textbf{repeat}
\item \(U \leftarrow U' \); \(\delta \leftarrow 0 \)
\item \textbf{for each} state \(s \) in \(S \) do
\item \(U'[s] \leftarrow \max_{a \in A(s)} \text{Q-VALUE}(mdp, s, a, U) \)
\item \textbf{if} \(|U'[s] - U[s]| > \delta \) \textbf{then} \(\delta \leftarrow |U'[s] - U[s]| \)
\item \textbf{until} \(\delta \leq \epsilon(1 - \gamma)/\gamma \)
\item \textbf{return} \(U \)
\end{enumerate}

\textbf{Figure 17.6} The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (17.1).

function \textsc{Policy-Iteration}(mdp) \textbf{returns} a policy
\begin{itemize}
\item \textbf{inputs:} mdp, an MDP with states \(S \), actions \(A(s) \), transition model \(P(s' \mid s, a) \)
\item \textbf{local variables:} \(U \), a vector of utilities for states in \(S \), initially zero
\item \(\pi \), a policy vector indexed by state, initially random
\end{itemize}
\begin{enumerate}
\item \textbf{repeat}
\item \(U \leftarrow \textsc{Policy-Evaluation}(\pi, U, mdp) \)
\item \text{unchanged}? \leftarrow \text{true}
\item \textbf{for each} state \(s \) in \(S \) do
\item \(a^* \leftarrow \arg \max_{a \in A(s)} \text{Q-VALUE}(mdp, s, a, U) \)
\item \textbf{if} \(\text{Q-VALUE}(mdp, s, a^*, U) > \text{Q-VALUE}(mdp, s, \pi[s], U) \) \textbf{then}
\item \(\pi[s] \leftarrow a^* \); \text{unchanged}? \leftarrow \text{false}
\item \textbf{until} \text{unchanged}?
\item \textbf{return} \(\pi \)
\end{enumerate}

\textbf{Figure 17.9} The policy iteration algorithm for calculating an optimal policy.
function POMDP-VALUE-ITERATION(pomdp, ε) returns a utility function

inputs: pomdp, a POMDP with states S, actions A(s), transition model P(s′ | s, a),
sensor model P(e | s), rewards R(s), discount γ

ε, the maximum error allowed in the utility of any state

local variables: U, U′, sets of plans p with associated utility vectors αp

U′ ← a set containing just the empty plan [], with α[](s) = R(s)

repeat
 U ← U′
 U′ ← the set of all plans consisting of an action and, for each possible next percept,
 a plan in U with utility vectors computed according to Equation (??)
 U′ ← REMOVE-DOMINATED-PLANS(U′)
until MAX-DIFFERENCE(U, U′) ≤ ε(1 − γ)/γ

return U

Figure 17.16 A high-level sketch of the value iteration algorithm for POMDPs. The
REMOVE-DOMINATED-PLANS step and MAX-DIFFERENCE test are typically implemented
as linear programs.
CHAPTER 18

MULTIAGENT DECISION MAKING

Actors\((A, B)\)
Init\((\text{At}(A, \text{LeftBaseline}) \land \text{At}(B, \text{RightNet}) \land \)
Approaching(Ball, RightBaseline) \land \text{Partner}(A, B) \land \text{Partner}(B, A)\)
Goal\((\text{Returned(Ball)} \land (\text{At}(x, \text{RightNet}) \lor \text{At}(x, \text{LeftNet}))\)
Action\((\text{Hit}(\text{actor, Ball}),\)
PRECOND:\text{Approaching(Ball, loc)} \land \text{At(\text{actor, loc})}
EFFECT:\text{Returned(Ball)})
Action\((\text{Go}(\text{actor, to}),\)
PRECOND:\text{At(\text{actor, loc})} \land \text{to} \neq \text{loc},
EFFECT:\text{At}(\text{actor, to}) \land \neg \text{At(\text{actor, loc})})

Figure 18.1 The doubles tennis problem. Two actors, \(A\) and \(B\), are playing together and can be in one of four locations: \text{LeftBaseline}, \text{RightBaseline}, \text{LeftNet}, and \text{RightNet}. The ball can be returned only if a player is in the right place. The \text{NoOp} action is a dummy, which has no effect. Note that each action must include the actor as an argument.
function LEARN-DECISION-TREE(examples, attributes, parent_examples) returns a tree

if examples is empty then return PLURALITY-VALUE(parent_examples)
else if all examples have the same classification then return the classification
else if attributes is empty then return PLURALITY-VALUE(examples)
else
 $A \leftarrow \arg\max_{a \in \text{attributes}} \text{IMPORTANCE}(a, \text{examples})$
 $\text{tree} \leftarrow$ a new decision tree with root test A
 for each value v of A do
 $\text{exs} \leftarrow \{ e : e \in \text{examples} \text{ and } e.A = v \}$
 $\text{subtree} \leftarrow \text{LEARN-DECISION-TREE}(\text{exs}, \text{attributes} - A, \text{examples})$
 add a branch to tree with label $(A = v)$ and subtree subtree
 return tree

Figure 19.5 The decision tree learning algorithm. The function IMPORTANCE is described in Section ???. The function PLURALITY-VALUE selects the most common output value among a set of examples, breaking ties randomly.
function MODEL-SELECTION(Learner, examples, k) returns a (hypothesis, error rate) pair

err ← an array, indexed by size, storing validation-set error rates
training_set, test_set ← a partition of examples into two sets
for size = 1 to ∞ do
 err[size] ← CROSS-VALIDATION(Learner, size, training_set, k)
 if err is starting to increase significantly then
 best_size ← the value of size with minimum err[size]
 h ← Learner(best_size, training_set)
 return h, ERROR-RATE(h, test_set)
function CROSS-VALIDATION(Learner, size, examples, k) returns error rate

N ← the number of examples
errs ← 0
for i = 1 to k do
 validation_set ← examples[(i - 1) × N/k: i × N/k]
 training_set ← examples − validation_set
 h ← Learner(size, training_set)
 errs ← errs + ERROR-RATE(h, validation_set)
return errs / k // average error rate on validation sets, across k-fold cross-validation

Figure 19.8 An algorithm to select the model that has the lowest validation error. It builds models of increasing complexity, and choosing the one with best empirical error rate, err, on the validation data set. Learner(size, examples) returns a hypothesis whose complexity is set by the parameter size, and which is trained on examples. In CROSS-VALIDATION, each iteration of the for loop selects a different slice of the examples as the validation set, and keeps the other examples as the training set. It then returns the average validation set error over all the folds. Once we have determined which value of the size parameter is best, MODEL-SELECTION returns the model (i.e., learner/hypothesis) of that size, trained on all the training examples, along with its error rate on the held-out test examples.

function DECISION-LIST-LEARNING(examples) returns a decision list, or failure

if examples is empty then return the trivial decision list No

t ← a test that matches a nonempty subset examples₁ of examples
 such that the members of examples₁ are all positive or all negative
if there is no such t then return failure
if the examples in examples₁ are positive then o ← Yes else o ← No
return a decision list with initial test t and outcome o and remaining tests given by
 DECISION-LIST-LEARNING(examples − examples₁)

Figure 19.11 An algorithm for learning decision lists.
function \textsc{AdaBoost}(\textit{examples}, L, K) returns a hypothesis

inputs: \textit{examples}, set of N labeled examples $(x_1, y_1), \ldots, (x_N, y_N)$

L, a learning algorithm
K, the number of hypotheses in the ensemble

local variables: w, a vector of N example weights, initially all $1/N$
h, a vector of K hypotheses
z, a vector of K hypothesis weights

$\epsilon \leftarrow$ a small positive number, used to avoid division by zero

for $k = 1$ to K

$h[k] \leftarrow L(\textit{examples}, w)$
$error \leftarrow 0$

for $j = 1$ to N do /* Compute the total error for $h[k]$*/

if $h[k](x_j) \neq y_j$ then $error \leftarrow error + w[j]$

if $error > 1/2$ then break from loop

$error \leftarrow \min(error, 1 - \epsilon)$

for $j = 1$ to N do /* Give more weight to the examples $h[k]$ got wrong*/

if $h[k](x_j) = y_j$ then $w[j] \leftarrow w[j] \cdot error / (1 - error)$

$w \leftarrow \text{NORMALIZE}(w)$
$z[k] \leftarrow \frac{1}{2} \log ((1 - error) / error)$ /* Give more weight to accurate $h[k]$*/

return Function(x): $\sum z[k] h[k](x)$

\textbf{Figure 19.25} The \textsc{AdaBoost} variant of the boosting method for ensemble learning. The algorithm generates hypotheses by successively reweighting the training examples. The function \textsc{Weighted-Majority} generates a hypothesis that returns the output value with the highest vote from the hypotheses in h, with votes weighted by z. For regression problems, or for binary classification with two classes -1 and 1, this is $\sum_k h[k]z[k]$.
function **PASSIVE-ADP-LEARNER**(*percept*) returns an action

inputs: *percept*, a percept indicating the current state s' and reward signal r

persistent: \(\pi \), a fixed policy

mdp, an MDP with model \(P \), rewards \(R \), actions \(A \), discount \(\gamma \)

\(U \), a table of utilities for states, initially empty

\(N_{s'|s,a} \), a table of outcome count vectors indexed by state and action, initially zero

\(s, a \), the previous state and action, initially null

if s' is new then \(U[s'] \leftarrow 0 \)

if s is not null then

increment \(N_{s'|s,a}[s,a][s'] \)

\(R[s,a,s'] \leftarrow r \)

add a to \(A[s] \)

\(P(· | s,a) \leftarrow \text{NORMALIZE}(N_{s'|s,a}[s,a]) \)

\(U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp) \)

$ s, a \leftarrow s', \pi[s'] $

return a

Figure 22.2 A passive reinforcement learning agent based on adaptive dynamic programming. The agent chooses a value for γ and then incrementally computes the P and R values of the MDP. The **POLICY-EVALUATION** function solves the fixed-policy Bellman equations, as described on page ??.
function PASSIVE-TD-LEARNER(percept) **returns** an action
inputs: percept, a percept indicating the current state s' and reward signal r
persistent: π, a fixed policy
s, the previous state, initially null
U, a table of utilities for states, initially empty
N_s, a table of frequencies for states, initially zero

if s' is new then $U[s'] \leftarrow 0$
if s is not null then
increment $N_s[s]$
$U[s] \leftarrow U[s] + \alpha(N_s[s]) \times (r + \gamma U[s'] - U[s])$
$s \leftarrow s'$
return $\pi[s']$

Figure 22.4 A passive reinforcement learning agent that learns utility estimates using temporal differences. The step-size function $\alpha(n)$ is chosen to ensure convergence.

function Q-LEARNING-AGENT(percept) **returns** an action
inputs: percept, a percept indicating the current state s' and reward signal r
persistent: Q, a table of action values indexed by state and action, initially zero
N_{sa}, a table of frequencies for state–action pairs, initially zero
s, a, the previous state and action, initially null

if s is not null then
increment $N_{sa}[s, a]$
$Q[s, a] \leftarrow Q[s, a] + \alpha(N_{sa}[s, a])(r + \gamma \max_{a'} Q[s', a'] - Q[s, a])$
$s, a \leftarrow s', \arg\max_{a'} f(Q[s', a'], N_{sa}[s', a'])$
return a

Figure 22.8 An exploratory Q-learning agent. It is an active learner that learns the value $Q(s, a)$ of each action in each situation. It uses the same exploration function f as the exploratory ADP agent, but avoids having to learn the transition model.
function CYK-PARSE(words, grammar) returns a table of parse trees
inputs: words, a list of words
 grammar, a structure with LEXICAL-RULES and GRAMMAR-RULES

T ← a table // T[X, i, k] is most probable X tree spanning words_i:k
P ← a table, initially all 0 // P[X, i, k] is probability of tree T[X, i, k]

// Insert lexical categories for each word.
for i = 1 to LEN(words) do
 for each (X, p) in grammar.LEXICAL-RULES(words_i) do
 P[X, i, i] ← p
 T[X, i, i] ← TREE(X, words_i)
 // Construct X_{i:k} from Y_{i:j} + Z_{j+1:k}, shortest spans first.
 for each (i, j, k) in SUBSPANS(LEN(words)) do
 for each (X, Y, Z, p) in grammar.GRAMMAR-RULES do
 PYZ ← P[Y, i, j] × P[Z, j + 1, k] × p
 if PYZ > P[X, i, k] do
 P[X, i, k] ← PYZ
 T[X, i, k] ← TREE(X, T[Y, i, j], T[Z, j + 1, k])
 end
 end
end

return T

function SUBSPANS(N) yields (i, j, k) tuples
for length = 2 to N do
 for i = 1 to N + 1 - length do
 k ← i + length - 1
 for j = i to k - 1 do
 yield (i, j, k)
 end
end

Figure 23.5 The CYK algorithm for parsing. Given a sequence of words, it finds the most probable parse tree for the sequence and its subsequences. The table P[X, i, k] gives the probability of the most probable tree of category X spanning words_i:k. The output table T[X, i, k] contains the most probable tree of category X spanning positions i to k inclusive. The function SUBSPANS returns all tuples (i, j, k) covering a span of words_i:k, with i ≤ j < k, listing the tuples by increasing length of the i : k span, so that when we go to combine two shorter spans into a longer one, the shorter spans are already in the table. LEXICAL-RULES(word) returns a collection of (X, p) pairs, one for each rule of the form X → word [htbp], and GRAMMAR-RULES gives (X, Y, Z, p) tuples, one for each grammar rule of the form X → Y Z [p].
Figure 23.8 Annotated tree for the sentence “Her eyes were glazed as if she didn’t hear or even see him.” from the Penn Treebank. Note a grammatical phenomenon we have not covered yet: the movement of a phrase from one part of the tree to another. This tree analyzes the phrase “hear or even see him” as consisting of two constituent VPs, [VP hear [NP *-1]] and [VP [ADVP even] see [NP *-1]], both of which have a missing object, denoted *-1, which refers to the NP labeled elsewhere in the tree as [NP-1 him]. Similarly, the [NP *-2] refers to the [NP-2 Her eyes].
It is a truth universally acknowledged that the earth is not the center of the universe. There are those who assert there is. I do not accept them, but others I consider to be of the same opinion. The truth is, however, that if there are other than the center, and if there are any other living things in the universe and if they are not human, then we do not yet have our answers. We have to go on. This page gives a simplified, simplified answer to the problem. We don’t have all the answers. The truth is, however, that the truth is out there.

When Gregor Samsa woke up one morning, he did not notice anything strange. “When my wife is looking at me, I feel like she is looking at a piece of art,” he said. “I think she is admiring something I have created.” The idea is that by looking at your own life, you learn something important and become a better person. It is a theory that emerged from psychologist Daniel Goleman’s work, in which he asked “How do you know you’re not a loser?”

Alice was beginning to get very tired of sitting with her sister on the bank. She sat up, yawned, and said, with a loud little scream, “I hope you don’t mind if I keep on doing what I should like to do, and if someone asks me which of us will do more, don’t tell them that I won’t do much, my dear sister.”

All happy families are alike; each happy family is like a garden of paradise. The only difference between happy families and unhappy families, is that the unhappy family doesn’t have any flowers or trees.

Tell me a story. Please fill out the following details. Thank you... Thank you for your interest in this interview. Please wait...

Figure 24.13 Example completion texts generated by the GPT-2 language model, given the prompts in bold. Most of the texts are quite fluent English, at least locally. The final example demonstrates that sometimes the model just breaks down.
CHAPTER 25

COMPUTER VISION
function MONTE-CARLO-LOCALIZATION(a, z, N, P(X’|X, v, ω), P(z|z*), map)
returns a set of samples, S, for the next time step
inputs: a, robot velocities v and ω
z, a vector of M range scan data points
P(X’|X, v, ω), motion model
P(z|z*), a range sensor noise model
map, a 2D map of the environment
persistent: S, a vector of N samples
local variables: W, a vector of N weights
S’, a temporary vector of N samples

if S is empty then
 for i = 1 to N do // initialization phase
 S[i] ← sample from P(X0)
for i = 1 to N do // update cycle
 S'[i] ← sample from P(X’|X = S[i], v, ω)
 W[i] ← 1
for j = 1 to M do
 z* ← RAYCAST(j, X = S'[i], map)
 W[i] ← W[i] · P(z_j| z*)
S ← WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S’, W)
return S

Figure 26.6 A Monte Carlo localization algorithm using a range-scan sensor model with independent noise.
CHAPTER 27

PHILOSOPHY, ETHICS, AND SAFETY OF AI
CHAPTER 28

THE FUTURE OF AI
CHAPTER 29

MATHEMATICAL BACKGROUND
CHAPTER 30

NOTES ON LANGUAGES AND ALGORITHMS