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Figure 1.2  FILES: figures/neuron.eps (Tue Nov 3 16:23:13 2@). The parts of a nerve cell or
neuron. Each neuron consists of a cell body, or soma, thaaitena cell nucleus. Branching out from
the cell body are a number of fibers called dendrites and deslogg fiber called the axon. The axon
stretches out for a long distance, much longer than the scdhés diagram indicates. Typically, an
axonis 1 cmlong (100 times the diameter of the cell body)chuatreach up to 1 meter. A neuron makes
connections with 10 to 100,000 other neurons at junctioiscaynapses. Signals are propagated fron)
neuron to neuron by a complicated electrochemical reacfldre signals control brain activity in the

short term and also enable long-term changes in the conritgaf neurons. These mechanisms are
thought to form the basis for learning in the brain. Most mfiation processing goes on in the cerebral
cortex, the outer layer of the brain. The basic organizationit appears to be a column of tissue abou

0.5 mm in diameter, containing about 20,000 neurons anahdixtg the full depth of the cortex about
4 mm in humans).




Figure 1.4  FILES: figures/blocks-world.eps (Tue Nov 3 16:227 2009).A scene from the blocks
world. SHRDLU (?) has just completed the command “Find a block which igtallan the one you are
holding and put it in the box.”
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INTELLIGENT AGENTS
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Figure 2.1  FILES: figures/agent-environment.eps (Tue Nov 36:22:19 2009).Agents interact
with environments through sensors and actuators.
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Figure 2.2  FILES: figures/vacuum2-environment.eps (Tue No 3 16:24:01 2009).A vacuum-
cleaner world with just two locations.
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Figure 2.9  FILES: figures/simple-reflex-agent.eps (Tue No® 16:23:44 2009).Schematic dia-
gram of a simple reflex agent.
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Figure 2.11

FILES: figures/model-based-reflex-agent.ep3ife Nov 3 16:23:11 2009)A model-

based reflex agent.
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Figure 2.13  FILES: figures/goal-based-agent.eps (Tue Nov 1¥6:22:54 2009). A model-based,
goal-based agent. It keeps track of the world state as wellset of goals it is trying to achieve, and
chooses an action that will (eventually) lead to the achiem of its goals.




10

Chapter 2. Intelligent Agents

~

y
=
What the world
< How the world evolves is like now

(]

What it will be like
if T do action A

How happy I will be
in such a state

What action T
should do now

v
Agent Actuators >
O /

f ,’_—__~~
~ <
S~ Sensors

< ‘What my actions do

JUSWIUOIIAUE]

Figure 2.14  FILES: figures/utility-based-agent.eps (Tue Nv 3 16:23:59 2009)A model-based,
utility-based agent. It uses a model of the world, along aithtility function that measures its prefer-
ences among states of the world. Then it chooses the actibletids to the best expected utility, where
expected utility is computed by averaging over all possihizome states, weighted by the probability
of the outcome.
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Figure 2.15  FILES: figures/learning-agent.eps (Tue Nov 3 183:06 2009). A general learning
agent.
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(a) Atomic (b) Factored (b) Structured

Figure 2.16  FILES: figures/atomic-factored-structured.g@s (Wed Nov 4 14:29:51 2009)Three

ways to represent states and the transitions between th@mAtgmic representation: a state (such
as B or C) is a black box with no internal structure; (b) Faetbrepresentation: a state consists of
a vector of attribute values; values can be Boolean, rdakda or one of a fixed set of symbols. (c)
Structured representation: a state includes objects,@&aghich may have attributes of its own as well

as relationships to other objects.
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SOLVING PROBLEMS BY
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Figure 3.2  FILES: figures/romania-distances.eps (Tue Nov 36:23:37 2009).A simplified road
map of part of Romania.
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Figure 3.3  FILES: figures/vacuumz2-state-space.eps (Tue M@ 16:24:01 2009) The state space
for the vacuum world. Links denote actions: LLeft, R =Right, S =Suck.
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Figure 3.4
puzzle.

FILES: figures/8puzzle.eps (Tue Nov 3 16:22:11 20). A typical instance of the 8-
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Figure 3.5 FILES: figures/8queens.eps (Wed Nov 4 16:21:52 @9). Almost a solution to the
8-queens problem. (Solution is left as an exercise.)
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(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Figure 3.6  FILES: figures/search-map.eps (Tue Nov 3 16:23832009). Partial search trees for

finding a route from Arad to Bucharest. Nodes that have beeareded are shaded; nodes that have

been generated but not yet expanded are outlined in bol&sniitit have not yet been generated arg

ng

shown in faint dashed lines.
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Figure 3.8  FILES: figures/romania-graph-search.eps (Tue Nv 3 13:48:17 2009).A sequence
of search trees generated by a graph search on the Romablarprof Figure 3.2. At each stage, we
have extended each path by one step. Notice that at the thgd,2he northernmost city (Oradea) has
become a dead end: both of its successors are already aexplarether paths.
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(a) (b) (©

Figure 3.9  FILES: figures/graph-separation.eps (Tue Nov 33:36:17 2009). The separation
property of QRAPH-SEARCH, illustrated on a rectangular-grid problem. The frontiehite nodes)
always separates the explored region of the state spaak (idales) from the unexplored region (gray
nodes). In (a), just the root has been expanded. In (b), @ientele has been expanded. In (c), the
remaining successors of the root have been expanded irvadleelorder.
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Figure 3.10 FILES: figures/state-vs-node.eps (Tue Nov 3 150:06 2009). Nodes are the data
structures from which the search tree is constructed. Easlalparent, a state, and various bookkeepin
fields. Arrows point from child to parent.
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>® @

Figure 3.12  FILES: figures/bfs-progress.eps (Tue Nov 3 162226 2009).Breadth-first search on
a simple binary tree. At each stage, the node to be expandédnedicated by a marker.
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Bucharest

Figure 3.15

FILES: figures/romania-subgraph.eps (Tue Nov 33:48:07 2009).Part of the Ro-

mania state space, selected to illustrate uniform-costkea
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Figure 3.16  FILES: figures/dfs-progress-noblack.eps (Tu&lov 3 13:30:55 2009). Depth-first
search on a binary tree. The unexplored region is shown m icay. Explored nodes with no descen-
dants in the frontier are removed from memory. Nodes at d8ptiave no successors andlis the only
goal node.
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Figure 3.19  FILES: figures/ids-progress.eps (Tue Nov 3 163204 2009).Four iterations of itera-
tive deepening search on a binary tree.
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Figure 3.20  FILES: figures/bidirectional.eps (Tue Nov 3 182:27 2009).A schematic view of a
bidirectional search that is about to succeed when a branaithe start node meets a branch from the
goal node.
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Figure 3.22  FILES: figures/romania-sid.eps (Tue Nov 3 16:237 2009). Values of hsrp—

straight-line distances to Bucharest.
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(a) The initial state

(b) After expanding Arad
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Figure 3.23  FILES: figures/greedy-progress.eps (Tue Nov $122:55 2009).Stages in a greedy
best-first tree search for Bucharest with the straight-ifrtance heuristid.s.,p. Nodes are labeled
with their h-values.
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(a) The initial state

366=0+366

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

449=75+374

418=418+40 615=455+160 607=414+193

Figure 3.24  FILES: figures/astar-progress.eps (Tue Nov 3 182:24 2009).Stages in anAsearch
for Bucharest. Nodes are labeled with= g + h. The h values are the straight-line distances to|
Bucharest taken from Figure 3.20.
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Figure 3.25  FILES: figures/f-circles.eps (Tue Nov 3 16:22512009). Map of Romania showing
contours atf = 380, f = 400, andf = 420, with Arad as the start state. Nodes inside a given contoyr
have f-costs less than or equal to the contour value.
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(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

(b) After unwinding back to Sibiu
and expanding Fagaras

349

591 450

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

449

418 615 607

Figure 3.27  FILES: figures/rbfs-progress.eps (Tue Nov 3 183:27 2009). Stages in an RBFS
search for the shortest route to Bucharest. FHemit value for each recursive call is shown on top
of each current node, and every node is labeled withfitost. (a) The path via Rimnicu Vilcea is
followed until the current best leaf (Pitesti) has a valuattis worse than the best alternative path
(Fagaras). (b) The recursion unwinds and the best leaf \@#ltiee forgotten subtree (417) is backed
up to Rimnicu Vilcea; then Fagaras is expanded, revealingsalbaf value of 450. (c) The recursion
unwinds and the best leaf value of the forgotten subtree)(#5Backed up to Fagaras; then Rimnicu
Vilcea is expanded. This time, because the best alternaéaitle(through Timisoara) costs at least 447,

the expansion continues to Bucharest.
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7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8
Start State Goal State
Figure 3.28 FILES: figures/8puzzle.eps (Tue Nov 3 16:22:110R9). A typical instance of the
8-puzzle. The solution is 26 steps long.
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Figure 3.30  FILES: figures/8puzzle-pattern.eps (Tue Nov 3@:22:11 2009).A subproblem of the
8-puzzle instance given in Figure 3.26. The task is to ges tll, 2, 3, and 4 into their correct positions,
without worrying about what happens to the other tiles.
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S .

Figure 3.31  FILES: figures/geometric-scene.eps (Tue Nov 822:54 2009) A scene with polyg-
onal obstaclesS andG are the start and goal states.
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Figure 3.32  FILES: figures/brio.eps (Wed Nov 4 14:35:23 2009 The track pieces in a wooden
railway set; each is labeled with the number of copies in #te Kote that curved pieces and “fork”
pieces (“switches” or “points”) can be flipped over so then carve in either direction. Each curve

subtends 45 degrees.
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objective function .
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shoulder
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current
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Figure4.1  FILES: figures/hill-climbing.eps (Tue Nov 3 16:3:03 2009).A one-dimensional state-
space landscape in which elevation corresponds to thetalgdanction. The aim is to find the global
maximum. Hill-climbing search modifies the current statéryoto improve it, as shown by the arrow.

The various topographic features are defined in the text.
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Figure 4.3  FILES: figures/8queens-successors.eps (Wed Né16:23:55 2009) figures/8queens-

local-minimum.eps (Wed Nov 4 16:14:15 2009)(a) An 8-queens state with heuristic cost estimate
h =17, showing the value ofi for each possible successor obtained by moving a queennwitthi
column. The best moves are marked. (b) A local minimum in togi@ens state space; the state has
h =1 but every successor has a higher cost.




39

Figure 4.4  FILES: figures/ridge.eps (Tue Nov 3 16:23:29 2009lllustration of why ridges cause
difficulties for hill climbing. The grid of states (dark cles) is superimposed on a ridge rising from left
to right, creating a sequence of local maxima that are netctli connected to each other. From each
local maximum, all the available actions point downhill.




40

Chapter 4. Beyond Classical Search
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Figure 4.6  FILES: figures/genetic.eps (Tue Nov 3 16:22:53 R0). The genetic algorithm, illus-
trated for digit strings representing 8-queens states.ifitial population in (a) is ranked by the fitness
function in (b), resulting in pairs for mating in (c). Theygoluce offspring in (d), which are subject to

mutation in (e).
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Figure 4.7  FILES: figures/8queens-crossover.eps (Wed Nov ¥%5:11:32 2009). The 8-queens
states corresponding to the first two parents in Figure %&(d the first offspring in Figure 4.6(d). The
shaded columns are lost in the crossover step and the urtsbaldenns are retained.
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Figure 4.9  FILES: figures/vacuumz2-states.eps (Tue Nov 3 184:02 2009). The eight possible
states of the vacuum world; states 7 and 8 are goal states.
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Figure 4.10  FILES: figures/erratic-vacuum-and-or-plan.gs (Tue Nov 3 13:32:58 2009).The

first two levels of the search tree for the erratic vacuum dioBtate nodes ar@r nodes where some
action must be chosen. At thevD nodes, shown as circles, every outcome must be handleddias in
cated by the arc linking the outgoing branches. The soldtiand is shown in bold lines.
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Figure 4.12  FILES: figures/slippery-vacuum-loop-plan.eg (Tue Nov 3 13:48:56 2009)Part of
the search graph for the slippery vacuum world, where we Is&igsvn (some) cycles explicitly. All
solutions for this problem are cyclic plans because thene iway to move reliably.
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(a) (b)

Figure 4.13  FILES: figures/vacuum-prediction.eps (Tue Nov3 13:51:56 2009).(a) Predicting
the next belief state for the sensorless vacuum world witatarchinistic actionRight. (b) Prediction
for the same belief state and action in the slippery versfahesensorless vacuum world.
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Figure 4.14  FILES: figures/vacuumz2-sets.eps (Tue Nov 3 16tD1 2009).The reachable portion
of the belief-state space for the deterministic, sensst@suum world. Each shaded box corresponds
to a single belief state. At any given point, the agent is iradigular belief state but does not know
which physical state it is in. The initial belief state (cdete ignorance) is the top center box. Actions
are represented by labeled links. Self-loops are omittedI&wity.
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(a)

[B,Dirty]

(b)

[B,Clean]

Figure 4.15
example of t
in the initial
states, the p
is a singleto

state with four physical states; for those states, the plespercepts ar@d, Dirty|, [B, Dirty], and
[B, Clean], leading to three belief states as shown.

FILES: figures/vacuum-prediction-update.epgTue Nov 3 13:52:01 2009). Two
ransitions in local-sensing vacuum worlds Irfdhe deterministic worldRight is applied
belief state, resulting in a new belief statéhmwo possible physical states; for those
ossible percepts @Be Dirty] and[B, Clean], leading to two belief states, each of which
n. (b) In the slippery worl&ight is applied in the initial belief state, giving a new belief
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[4,Clean] [B,Dirty] [B,Clean]

Figure 4.16  FILES: figures/local-sensing-vacuum-and-oeps (Tue Nov 3 13:42:56 2009)The
first level of theaAND—OR search tree for a problem in the local-sensing vacuum wétak is the first
step of the solution.
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[A4,Clean]

Figure 4.17  FILES: figures/kindergarten-vacuum-filtering.eps (Tue Nov 3 13:41:48 2009)wo
prediction—update cycles of belief-state maintenanchkerkindergarten vacuum world with local sens-

ing.
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(b) Possible locations of robot After E1= NSW,Eo= NS

Figure 4.18  FILES: figures/localization-figures-a.eps (Ta Nov 3 16:23:06 2009)Possible po-
sitions of the robot,®, (a) after one observatio’; = NSW and (b) after a second observation
E>=NS. When sensors are noiseless and the transition model iseaecthere are no other pos-
sible locations for the robot consistent with this sequesfdeio observations.
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Figure 4.19  FILES: figures/maze-3x3.eps (Tue Nov 3 16:23:08)09). A simple maze problem.
The agent starts & and must reaclir but knows nothing of the environment.
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Figure 4.20  FILES: figures/adversary-spaces.eps (Tue Novi®:22:18 2009) figures/adversary-
blocks.eps (Sun Oct 25 01:08:26 2009ja) Two state spaces that might lead an online search agent
into a dead end. Any given agent will fail in at least one ofsthapaces. (b) A two-dimensional
environment that can cause an online search agent to foloartatrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocksattg with another long, thin wall, so that
the path followed is much longer than the best possible path.
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Figure 4.22  FILES: figures/quicksand.eps (Tue Nov 3 13:458&2009).An environment in which
a random walk will take exponentially many steps to find thalgo
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Figure 4.23  FILES: figures/Irta-progress.eps (Tue Nov 3 1@3:08 2009). Five iterations of
LRTA" on a one-dimensional state space. Each state is labeleddyith, the current cost estimate
to reach a goal, and each link is labeled with its step cose sftaded state marks the location of the
agent, and the updated cost estimates at each iteratioirceslc




5

ADVERSARIAL SEARCH

55




56 Chapter 5. Adversarial Search
MAX (x)
X X X
MIN (o) X X X
\ . . .
x|o x| lo| [x
MAX (x) [o)
x[o[x| [x]o x|0
MIN (0) X X
x[o[x] [x[o[x] [x]o[x
TERMINAL o[x| [o]o[x X
[ x[x]o] [x][o]o
Utility -1 0 +1
Figure 5.1  FILES: figures/tictactoe.eps (Tue Nov 3 16:23:53009). A (partial) game tree for the
game of tic-tac-toe. The top node is the initial state, sk moves first, placing an in an empty
square. We show part of the tree, giving alternating movesgiby(0) andmax (x), until we eventually
reach terminal states, which can be assigned utilitiesrdotpto the rules of the game.
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MAX

MIN

Figure 5.2

A\ nodes are MAX nodes,” in which it isvAX’s turn to move, and th& nodes are 1IN nodes.” The
terminal nodes show the utility values fanx ; the other nodes are labeled with their minimax values
MAX's best move at the root ig;, because it leads to the state with the highest minimax yaloe
MIN’s best reply i$h;, because it leads to the state with the lowest minimax value.

FILES: figures/minimax.eps (Tue Nov 3 16:23:11 Z1M). A two-ply game tree. The
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to move
A

(1,2,6) (4,2,3) (6,1,2) (7,4.1) (5,1.1) (1,5,2) (7,7,1) (5.4,5)

Figure 5.4  FILES: figures/minimax3.eps (Tue Nov 3 16:23:11009). The first three plies of a
game tree with three playersl( B, C). Each node is labeled with values from the viewpoint of eacl
player. The best move is marked at the root.

n




59

(d)

Figure 5.5 FILES: figures/alpha-beta-progress.eps (Tue No3 16:22:20 2009). Stages in the
calculation of the optimal decision for the game tree in Fégh.2. At each point, we show the range
of possible values for each node. (a) The first leaf bel$as the value 3. Henc&, which is amIN
node, has a value @t most 3. (b) The second leaf below has a value of 12N would avoid this
move, so the value aB is still at most 3. (c) The third leaf belo# has a value of 8; we have seen
all B’s successor states, so the valueiofs exactly 3. Now, we can infer that the value of the root is
at least 3, becausenAX has a choice worth 3 at the root. (d) The first leaf belovihas the value 2.
Hence,C, which is amIN node, has a value @t most 2. But we know thatB is worth 3, soMAX
would never choos€'. Therefore, there is no point in looking at the other sucoestates of”. This

is an example of alpha—beta pruning. (e) The first leaf bdlbhas the value 14, sb is worthat most
14. This is still higher thamax’s best alternative (i.e., 3), so we need to keep explof¥gsuccessor
states. Notice also that we now have bounds on all of the ssoc®of the root, so the root’s value is
also at most 14. (f) The second successobaf worth 5, so again we need to keep exploring. The
third successor is worth 2, so naly is worth exactly 2.MAx’s decision at the root is to move 8,
giving a value of 3.
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Player

Opponent

Player

Opponent

Figure 5.6  FILES: figures/alpha-beta-general.eps (Tue No8 16:22:20 2009).The general case
for alpha—beta pruning. I is better tham for Player, we will never get ta in play.
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(b) White to move

(a) White to move

Figure5.8  FILES: figures/chess-evaluation3.eps (Tue Nov1®:22:33 2009).Two chess positions
that differ only in the position of the rook at lower right. (a), Black has an advantage of a knight and
two pawns, which should be enough to win the game. In (b), ®Mlill capture the queen, giving it an

advantage that should be strong enough to win.
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0 N9 N kAW =

Figure 5.9  FILES: figures/horizon.eps (Tue Nov 3 16:23:03 ZI®). The horizon effect. With
Black to move, the black bishop is surely doomed. But Blagkfecaestall that event by checking the
white king with its pawns, forcing the king to capture the pawThis pushes the inevitable loss of the
bishop over the horizon, and thus the pawn sacrifices aretgethe search algorithm as good moves
rather than bad ones.




63

0 1 2 3 4 5 6 7 8 9 10 11 12

25 24 23 22 21 20 19 18 17 16 15 14 13

Figure 5.10  FILES: figures/backgammon-position.eps (Tue div 3 16:22:26 2009). A typical

backgammon position. The goal of the game is to move all guieses off the board. White moves
clockwise toward 25, and Black moves counterclockwise tdvia A piece can move to any position
unless multiple opponent pieces are there; if there is opemmgnt, it is captured and must start over. In
the position shown, White has rolled 6-5 and must choose grfour legal moves: (5-10,5-11), (5—
11,19-24), (5-10,10-16), and (5-11,11-16), where thdiontéb—11,11-16) means move one piece
from position 5 to 11, and then move a piece from 11 to 16.
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MAX /\
CHANCE () O O --- O O
1/36 1/18 1/18 1/36
1,1 6,5 6,6
MIN YV \/ \/
CHANCE (c) O .. O O
1/36 1/18 1/18 1/36
1,1 1,2 6,5 6,6
MAX /A A\ /\ VAN
TERMINAL 2 - 1 —1 1
Figure 5.11  FILES: figures/backgammon-tree.eps (Tue Nov 36122:26 2009).Schematic game
tree for a backgammon position.
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MAX

CHANCE

MIN

20 20 30 30 1 1 400 400

Figure 5.12  FILES: figures/chance-evaluation.eps (Tue Nod 16:22:32 2009). An order-
preserving transformation on leaf values changes the begt.m




66

Chapter 5. Adversarial Search

Figure 5.13  FILES: figures/kriegspiel-krk.eps (Tue Nov 3 1341:43 2009). Part of a guaranteed
checkmate in the KRK endgame, shown on a reduced board. Initizé belief state, Black’s king is
in one of three possible locations. By a combination of pnghihoves, the strategy narrows this down
to one. Completion of the checkmate is left as an exercise.
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MAX

MIN 99 100

99 1000 1000 1000 100 101 102 100

Figure 5.14  FILES: figures/minimax-error.eps (Tue Nov 3 1623:11 2009).A two-ply game tree
for which heuristic minimax may make an error.
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(a)

Figure 5.15 FILES: figures/pursuit-evasion-game.eps (Tudlov 3 13:46:04 2009).(a) A map
where the cost of every edge is 1. Initially the pursireis at nodeb and the evadeF is at noded. (b)
A partial game tree for this map. Each node is labeled with”hE positions.P moves first. Branches

marked “?” have yet to be explored.
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1 2 3 4

Figure 5.16  FILES: figures/line-game4.eps (Tue Nov 3 16:236 2009). The starting position of
a simple game. Playet moves first. The two players take turns moving, and each playest move
his token to an open adjacent space in either directionelbffponent occupies an adjacent space, the
a player may jump over the opponent to the next open spacg.if(Bor example, ifA is on 3 andB
is on 2, thenAd may move back to 1.) The game ends when one player reachepghbsite end of the
board. If playerA reaches space 4 first, then the value of the gamé i®+1; if player B reaches
space 1 first, then the value of the gamedts —1.

>
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n

Figure 5.17  FILES: figures/alpha-beta-proof.eps (Tue Nov 36:22:21 2009). Situation when
considering whether to prune node.
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Figure 5.18  FILES: figures/pruning.eps (Tue Nov 3 16:23:22@)9). The complete game tree for
a trivial game with chance nodes.
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Figure 5.19  FILES: figures/NewellSimonMcCarthy.eps (Tue Mv 3 16:22:16 2009)Pioneers in
computer chess: (a) Herbert Simon and Allen Newell, deva®pf the NSS program (1958); (b) John
McCarthy and the Kotok—McCarthy program on an IBM 7090 (9967
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Chapter 6. Constraint Satisfaction Problems

Northern
Territory

Western
Australia
South
Australia a
Victoria
Tasmania @
(a) (b)
Figure 6.1

FILES: figures/australia.eps (Tue Nov 3 16:22:2@009) figures/australia-csp.eps
(Tue Nov 3 16:22:25 2009).(a) The principal states and territories of Australia. Givlg this map
can be viewed as a constraint satisfaction problem (CSR).gbal is to assign colors to each region

so that no neighboring regions have the same color. (b) Thgcuokring problem represented as a
constraint graph.
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T wo
+ T W O

FOUR

(a)

(b)

Figure 6.2  FILES: figures/cryptarithmetic.eps (Tue Nov 3 1331:28 2009).(a) A cryptarithmetic
problem. Each letter stands for a distinct digit; the ainoifind a substitution of digits for letters such
that the resulting sum is arithmetically correct, with thdded restriction that no leading zeroes are
allowed. (b) The constraint hypergraph for the cryptarighioproblem, showing thdlidiff constraint
(square box at the top) as well as the column addition cdangsréfour square boxes in the middle).
The variableg”;, C2, andCj5 represent the carry digits for the three columns.
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1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
A 3 2 6 Al4]18[319]12|1]6(5]7
Bl19 3 5 1 Bl9[6|7]3]4[5]8]2]1
c 118 6]4 cl2[5(1]8]7][6]4]9]3
D 811 219 DI5[4(811[3[2]9]7]|6
El7 8 E|7[2]9]5]6[4]1]|3]|8
F 6]7 812 FIL[3[6]7]9[8]2]4]5
G 216 915 G[3]|7[2]16]8|9]5(1]|4
HI8 2 3 9 HI8[1[4]12]5[3]7]6]9
! 5 1 3 116[9]5]14]1[7]3]8]2
(a) (b)
Figure 6.4  FILES: figures/sudoku.eps (Tue Nov 3 13:49:46 290. (a) A Sudoku puzzle and (b)
its solution.
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WA=red
NT=green

WA=red
NT=green
Q=red

T

WA=red
NT=blue

WA=red
NT=green
Q=blue

T

Figure 6.6  FILES: figures/australia-search.eps (Tue Nov 3@22:25 2009). Part of the search

tree for the map-coloring problem in Figure 6.1.




78

Chapter 6. Constraint Satisfaction Problems

WA NT (0] NSW \%4 SA T
Initial domains | R GB|R G B|[RG B|RGB|RGB|RGB|RG B
After WA=red |® GB|RGB|RGB|RGB| GB|RGB
After Q=green ® Bl ©@ [R B|RGB B|R G B
After V=blue |® B| @ |R RGB

Figure 6.7  FILES: figures/australia-fc.eps (Tue Nov 3 16:225 2009). The progress of a map-
coloring search with forward checkingVA = red is assigned first; then forward checking deletes
from the domains of the neighboring variabl®&<" and SA. After Q = green is assignedgreen is
deleted from the domains @f T, SA, and NSW . After V = blue is assignedplue is deleted from the
domains of NSW and SA, leavingSA with no legal values.
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Figure 6.9  FILES: figures/8queens-min-conflicts.eps (Wed &V 4 16:20:15 2009).A two-step
solution using min-conflicts for an 8-queens problem. Atestage, a queen is chosen for reassignment
in its column. The number of conflicts (in this case, the nundbattacking queens) is shown in each
square. The algorithm moves the queen to the min-conflictareg breaking ties randomly.
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(@)

(b)

Figure 6.10  FILES: figures/tree-csp.eps (Tue Nov 3 16:23:58009). (a) The constraint graph of
a tree-structured CSP. (b) A linear ordering of the varialdensistent with the tree with as the root.
This is known as &opological sort of the variables.
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D—0 O—@
P C

@é@@ a@

o o

(@) (b)

Figure 6.12

tree.eps (Tue Nov 3 16:22:26 2009)(a) The original constraint graph from Figure 6.1. (b) The
constraint graph after the removal 8.

FILES: figures/australia-csp.eps (Tue Nov 3 182:25 2009) figures/australia-
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Figure 6.13  FILES: figures/australia-decomposition.epsTue Nov 3 16:22:25 2009)A tree de-
composition of the constraint graph in Figure 6.12(a).
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4 |S&ns “Breeze —|
Z Breoze —|
i oo, B
3 V) \S‘lelnc’h/ PIT ~ Zleeze =
AT
P
2 Stenen ZBlesze =
| gl rT R
START
1 2 3 4

Figure 7.2 FILES: figures/wumpus-world.eps (Tue Nov 3 16:243 2009). A typical wumpus
world. The agent is in the bottom left corner, facing right.
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1,4 2,4 34 44 = Agent 1,4 2,4 3,4 4.4
B =Breeze
G = Glitter, Gold
OK = Safe square
1,3 2,3 33 43 P =Pit 1,3 2,3 3,3 43
S =Stench
V = Visited
W = Wumpus
1,2 2,2 3,2 4,2 1,2 2,2 3,2 4,2
P?
OK OK
1,1 2,1 3,1 4,1 1,1 2,1 3,1 4,1
P?
A B
OK OK OK OK
(@) (b)
Figure 7.3 FILES: figures/wumpus-seqOl.eps (Tue Nov 3 16:240 2009). The
first step taken by the agent in the wumpus world. (@) The ahitsituation, af-
ter percept [None, None, None, None, None]. (b) After one move, with percept
[None, Breeze, None, None, None].
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2,4 3,4 4,4 = Agent 1,4 24, |34 4,4
B =Breeze
G = Glitter, Gold
OK = Safe square
Wi 2,3 3,3 4,3 P =Pit 1.3 w1 2,3 3.3 po 43
S =Stench S G
V = Visited B
W = Wumpus
1,2 2,2 3,2 4,2 1,2 2,2 3,2 4,2
A S
S A% \%
OK OK OK OK
21 g 31 b 4,1 1,1 21 4 31 5 4,1
\% A% \ \%
OK OK OK OK
(@) (b)
Figure 7.4  FILES: figures/wumpus-seq35.eps (Tue Nov 3 16:241 2009).Two later stages in the

progress of the agent. (a) After the third move, with per¢Sptnch, None, None, None, None]. (b)

After the fifth move, with perceptStench, Breeze, Glitter, None, None].
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(@) (b)

Figure 7.5  FILES: figures/wumpus-entailment.eps (Tue Nov 36:24:09 2009) figures/wumpus-
nonentailment.eps (Tue Nov 3 16:24:10 2009Possible models for the presence of pits in squares
[1,2], [2,2], and [3,1]. The KB corresponding to the obsénsms of nothing in [1,1] and a breeze in
[2,1] is shown by the solid line. (a) Dotted line shows mods#ls; (no pitin [1,2]). (b) Dotted line
shows models ofvz (no pitin [2,2]).
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—_—_—
Sentences - Sentence
Entails
sontati ¢ e
Representation 3 §
_____________ gt B
@ @

Aspects of the ™ Aspect of the
real world Follows real world

Figure 7.6  FILES: figures/follows+entails.eps (Tue Nov 3 182:52 2009).Sentences are physical
configurations of the agent, and reasoning is a process stremting new physical configurations from
old ones. Logical reasoning should ensure that the new agmafigns represent aspects of the world
that actually follow from the aspects that the old configiors represent.
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B VP,V Py Py VB

‘I

| By VP, V31,1| | Py Vv Py VP

By V Py VBl,1| |P1,2 V Py VP,

Figure 7.13  FILES: figures/wumpus-resolution.eps (Tue Nod 16:24:10 2009).Partial applica-
tion of PL-RESOLUTIONtO a simple inference in the wumpus world P; » is shown to follow from
the first four clauses in the top row.
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P =Q

LANM = P
BANL = M
AANP = L
AANB = L

(@)

A B
(b)

Figure 7.16  FILES: figures/pl-horn-example.eps (Tue Nov 33:45:07 2009).(a) A set of Horn

clauses. (b) The correspondiagiD—OR graph.
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symbols is satisfiable, as a function of the clause/symbi ra/n. (b) Graph of the median run time
(measured in number of recursive calls to DPLL, a good proxyjandom 3-CNF sentences. The most
difficult problems have a clause/symbol ratio of about 4.3.

19 2000
1800 DPLL —+—
08 - 1600 { WalkSAT ---s--- 1)l
T 1400
S 06 2 1200
2 ‘2 1000
< p}
804 & 800
& 600
0.2 1 400
200
0 ey R = Gl
0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
Clause/symbol ratiavn Clause/symbol ratiavn
@) (b)
Figure 7.19  FILES:. (a) Graph showing the probability that a random 3-CNF sargevithn = 50
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O 00O o

Figure 7.21  FILES: figures/wiggly-belief-state.eps (Tue bv 3 13:53:12 2009).Depiction of a
1-CNF belief state (bold outline) as a simply representatamservative approximation to the exact
(wiggly) belief state (shaded region with dashed outlifi&gch possible world is shown as a circle; the,
shaded ones are consistent with all the percepts.
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Chapter 8. First-Order Logic

brother

person
king

brother

Figure 8.2  FILES: figures/fol-model.eps (Tue Nov 3 16:22:52009). A model containing five
objects, two binary relations, three unary relations @atttd by labels on the objects), and one unary
function, left-leg.
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HOOD-E.-S-

Figure 8.4  FILES: figures/all-models-standard.eps (Tue N© 3 13:21:28 2009).Some members
of the set of all models for a language with two constant sysb® and.J, and one binary relation
symbol. The interpretation of each constant symbol is shioyva gray arrow. Within each model, the
related objects are connected by arrows.
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HHOD-E

Figure 8.5 FILES: figures/all-models-database.eps (Tue N3 13:21:39 2009).Some members
of the set of all models for a language with two constant sysb® and.J, and one binary relation
symbol, under database semantics. The interpretationeofdhstant symbols is fixed, and there is g
distinct object for each constant symbol.
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!
}

Figure 8.6  FILES: figures/adder.eps (Tue Nov 3 16:22:18 2009A digital circuit C1, purporting
to be a one-bit full adder. The first two inputs are the two bitbe added, and the third input is a
carry bit. The first output is the sum, and the second outpaitisrry bit for the next adder. The circuit
contains two XOR gates, two AND gates, and one OR gate.
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George M Mum

Spencer M Kydd Elizabeth M Philip Margaret

DianaM Charles Anne X Mark  Andrew X Sarah  Edward M Sophie

/NN N

William Harry  Peter Zara Beatrice Eugenie Louise James

Figure 8.7  FILES: figures/familyl.eps (Tue Nov 3 16:22:46 ZID). A typical family tree. The
symbol ‘1" connects spouses and arrows point to children.
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Xo 4+ Z
Y, 1 Ad h 0
X, Z, X X X X
Y, ] Ady

+ Y3 1 Y Y
X, z
Y i 4% ’ Zy Zy 2, 7y %
X 1 7z
Y; 0 A% 1z,

Figure 8.8  FILES: figures/4bit-adder.eps (Tue Nov 3 16:22:0 2009).A four-bit adder. Eactid;
is a one-bit adder, as in Figure 8.5 on page 97.
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Employs(x,y) Employs(x,y)
Employs(x,Richard) Employs(IBM.,y) Employs(x,John) Employs(x,x) Employs(John,y)
Employs(IBM,Richard) Employs(John,John)
(@ (b)

Figure 9.2  FILES: figures/subsumption-lattices.eps (Tue bv 3 16:23:50 2009).(a) The sub-
sumption lattice whose lowest nodeAsnploys(IBM, Richard). (b) The subsumption lattice for the
sentencéZmploys(John, John).
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Criminal(West)

| Weapon(M,) | |Sells(West,M1,N0no) | Hostile(Nono)
| American(West) | | Missile(M,) | | Owns(Nono,M) | |Enemy(N0n0,America) |

Figure 9.4  FILES: figures/crime-fc.eps (Tue Nov 3 16:22:35@09). The proof tree generated by
forward chaining on the crime example. The initial facts eguapat the bottom level, facts inferred on
the first iteration in the middle level, and facts inferredtba second iteration at the top level.
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@ @ Diff (wa, nt) A Diff (wa, sa) A
@ Diff (nt, q) A Diff (nt, sa) A
‘ Diff (¢, nsw) A Diff (g, sa) A
nsw,v) A Diff (nsw, sa) A

G
‘ Diff (v, sa) = Colorable()

a Diff (Red, Blue) Diff (Red, Green)
Diff (Green, Red) Diff (Green, Blue)

@ Diff (Blue, Red) Diff (Blue, Green)

(a) (b)

Figure 9.5 FILES: figures/australia-csp.eps (Tue Nov 3 16225 2009).(a) Constraint graph for
coloring the map of Australia. (b) The map-coloring CSP esged as a single definite clause. Each
map region is represented as a variable whose value can lf treeconstant®led, Green or Blue.
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Criminal(West)

Hostile(Nono)

|American(West)| | Weapon(y) | |Sells(West,M1,z) |
{} {z/Nono}

| Missile(y) | | Missile(M,) | |0wns(N0n0,M1) | |Enemy(Nono,America) |
{y/M} {} {} {}

Figure 9.7  FILES: figures/crime-bc.eps (Tue Nov 3 16:22:34(9). Proof tree constructed by
backward chaining to prove that West is a criminal. The tteautd be read depth first, left to right.
To prove Criminal( West), we have to prove the four conjuncts below it. Some of theserathe
knowledge base, and others require further backward aigidindings for each successful unification
are shown next to the corresponding subgoal. Note that oneesobgoal in a conjunction succeeds,
its substitution is applied to subsequent subgoals. Thushé time FOL-BC-/skK gets to the last
conjunct, originallyHostile(z), z is already bound t&Vono.
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A,
A B C
O—0O—0O
(a)

Figure 9.9  FILES: figures/prolog-ribbon.eps (Tue Nov 3 16:3:22 2009).(a) Finding a path from
A to C can lead Prolog into an infinite loop. (b) A graph in which eadue is connected to two
random successors in the next layer. Finding a path fianto J, requires 877 inferences.
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path(a,c)
path(a,c)

path(a,Y) ‘ ’ link(Y,c)
link(a,c) ‘ l path(a,Y) ‘ l link(b,c)
fail {}
path(a,Y’) ‘ ’ link(Y’,Y) ‘
link(a,Y)
{Y/b}
(a) (b)

Figure 9.10 FILES: figures/proof-abcl.eps (Tue Nov 3 16:232 2009) figures/proof-abc2.eps
(Tue Nov 3 16:23:22 2009)(a) Proof that a path exists from to C. (b) Infinite proof tree generated
when the clauses are in the “wrong” order.
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—American(x) V =Weapon(y) Vv —Sells(x,y,z) V =Hostile(z) V Criminal(x) \l\"Criminal(West)

l American(West) L\l—rAmerican(West) V = Weapon(y) V =Sells(West,y,z) V =Hostile(z)

l —Missile(x) V Weapon(x) L\l

[ Missile(M,) LN[-Missile(y) V —Sells(West,y.z) V ~Hostile(z)

1 —

Weapon(y) V —Sells(West,y,z) V =Hostile(z)

= Missile(x) V=-Owns(Nono,x) V Sells(WeSt,x,Nono)L\l\ﬂsells(West,Ml,z) V =Hostile(z)

[ Missile(My) LN[ﬂMissile(Ml )V =Owns(Nono,My) V =Hostile(Nono) |

lOwns(Nona,M]) %ﬂOWns(Nono,Ml) V = Hostile(Nono) l

l =Enemy(x,America)V Hostile(x) Nl—vHostile(Nono) l

l Enemy(Nono,America) w@Euemy(Nona,America) l

Figure 9.11  FILES: figures/crime-resolution.eps (Tue Nov 36:22:35 2009) A resolution proof
that West is a criminal. At each step, the literals that uaify in bold.
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l Cat(Tuna) l l —Cat(x) V Animal(x) l [Killx(!ack, Tuna) V Kills(Curiosity, Tuna)l [ﬂKills(Curiosity, Tuna)]

l Kills(Jack, Tuna) l lﬁLaves(x,F(x))V Loves(G(x), X)l l —Animal(x) VLoves(Jack, x) l

l Animal(Tuna) l l —Loves(y, x)V ~Animal(z) V-Kills(x, z)

l —Loves(y, x) V—Kills(x, Tuna) l l —Animal(F(Jack)) V Loves(G(Jack), Jack) l lAnimal(F(x)) V Loves(G(x), x) l

—-Loves(y, Jack)

Loves(G(Jack), Jack)

U]

Figure 9.12  FILES: figures/curiosity.eps (Tue Nov 3 16:22:8 2009).A resolution proof that Cu-
riosity killed the cat. Notice the use of factoring in theiglation of the clausd.oves(G(Jack), Jack).
Notice also in the upper right, the unificationbfves(z, F'(x)) and Loves(Jack, z) can only succeed
after the variables have been standardized apart.
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Any set of sentences S is representable in clausal form

Assume S is unsatisfiable, and in clausal form

Some set S' of ground instances is unsatisfiable

|-

Resolution can find a contradiction in S'

<

There is a resolution proof for the contradiction in S'

Herbrand’s theorem

Ground resolution
theorem

Lifting lemma

Figure 9.13  FILES: figures/resolution-completeness.epdife Nov 3 16:23:28 2009).Structure

of a completeness proof for resolution.




1 O CLASSICAL PLANNING

110




111

BA
1

Start State Goal State

IOW';D

Figure 10.4  FILES: figures/sussman-anomaly.eps (Tue Nov 323:50 2009). Diagram of the
blocks-world problem in Figur@?.
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Chapter 10.

Classical Planning

(a)

TN

AH(P;, B)
At(P,, A)

APy, A)
AlP», B)

ok

™~ AP, A
A AtrB
(b)
e At(P;, B) Fly(Py, A, B)
P Al(P,, A)
N,
Figure 10.5 FILES: figures/two-plan-searches.eps (Tue Nd¥ 16:23:58 2009).Two approaches

to searching for a plan. (a) Forward (progression) searobutih the space of states, starting in the|
initial state and using the problem’s actions to search &mdfor a member of the set of goal states. (b)
Backward (regression) search through sets of relevargsstatarting at the set of states representing

the goal and using the inverse of the actions to search badiarthe initial state.
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Figure 10.6  FILES: figures/ignore-del.eps (Tue Nov 3 16:284 2009). Two state spaces from
planning problems with the ignore-delete-lists heuristithe height above the bottom plane is the
heuristic score of a state; states on the bottom plane ate.gid@ere are no local minima, so search for
the goal is straightforward. From ? (?).
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Bake(Cake)
Have(Cake) {7 Have(Cake) >< T Have(Cake)
— Have(Cake) 1 — Have(Cake)
Eat(Cake) [ Eat(Cake)
Eaten(Cake) T Eaten(Cake)
— Eaten(Cake) 1 — Eaten(Cake) 1 — Eaten(Cake)

Figure 10.8  FILES: figures/eatcake-graphplan2.eps (Tue No3 16:22:41 2009).The planning
graph for the “have cake and eat cake too” problem up to I8velRectangles indicate actions (small
squares indicate persistence actions), and straightilinésate preconditions and effects. Mutex links
are shown as curved gray lines. Not all mutex links are shbdoause the graph would be too cluttered
In general, if two literals are mutex &%, then the persistence actions for those literals will beaxiat
A; and we need not draw that mutex link.
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So Ao S Ay So
At(Spare, Trunk) T At(Spare, Trunk) 1 At(Spare, Trunk)
=1 At(Spare, Trunk) {1 — At(Spare, Trunk)
At(Flat,Axle) / At(Flat,Axle) T} At(Flat,Axle)

— At(Flat,Axle) “‘V = At(Flat, Axle)

N

]
LeaveOvernight
]

-1 At(Spare,Axle) —1 At(Spare,Axle) \ —1 At(Spare,Axle)
Y (spere )
—1 At(Flat,Ground) 1 At(Flat,Ground) ] ‘\‘ — At(Flat,Ground)
At(Flat,Ground) / 1 At(Flat,Ground)
=1 At(Spare, Ground) T ‘ -1 At(Spare,Ground) / 1 \ — At(Spare,Ground)
At(Spare,Ground) T At(Spare,Ground)

Figure 10.10 FILES: figures/tire-graphplan2.eps (Tue Nov 316:23:55 2009). The planning
graph for the spare tire problem after expansion to leel Mutex links are shown as gray lines.
Not all links are shown, because the graph would be too ckdt# we showed them all. The solution
is indicated by bold lines and outlines.
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[~
I~
S
S~ IS
~ m
@\\" \\
I~ E& I~
S~ [~ ™~
~_| P~ ~
I~ a S~
Q 5 \\\\ m I~
\\ \\ ~
~_| \\\ Result(Resuli(S,, Forward),
@ \\ m [ \\ Turn(Right))
i m ™ \Q Turn(Right)
\\ Result(S,, Forward)
T T
~ m I~
\\ Forward
~
So
Figure 10.12  FILES: figures/situations.eps (Tue Nov 3 16:285 2009). Situations as the results
of actions in the wumpus world.
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Ar(Spare, Trunk) At(Spare,Axle)

Al(Flat, Axle)
At(Spare, Trunk)l Remove(Spare, Trunk)

At(Spare, Trunk) At(Spare, Ground)
PutOn(Spare,Axle Af(SPa’evAX/e)-
Ar(FIat,AxIe) 1 Af(Flat,Axle) (Sp ) m

At(Spare, Trunk)l Remove(Spare, Trunk)

At(Spare, Trunk) At(Spare, Ground)
PutOn(Spare,Axl) [-e=AtSpare axe)_Finish _|
At(Flat,Axle) -1 Al(Flat, Axle)

AtFlat Axie) | Remove(Flat,Axle)

€Y

(b)

(©)

Figure 10.13

Nov 4 14:40:52 2009) figures/tire2.eps (Wed Nov 4 14:40:38(). (a) the tire problem expressed as
an empty plan. (b) an incomplete partially ordered plan lfer tire problem. Boxes represent actions
and arrows indicate that one action must occur before anditjea complete partially-ordered solution.

FILES: figures/tire-empty.eps (Wed Nov 4 14:401 2009) figures/tire0.eps (Wed
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Switch éﬂ
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Room 4
Switchilj
Door 3
Room 3
Shakey ‘
Soneh éﬂ Corridor
Door 2
Room 2
Switchéﬂ
Box 3
oX Box 2
Door 1
Room 1
Box 4 Box 1
Figure 10.14  FILES: figures/shakey2.eps (Tue Nov 3 16:23:48)09). Shakey’s world. Shakey
can move between landmarks within a room, can pass througlldbr between rooms, can climb
climbable objects and push pushable objects, and can flipdigitches.
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[0,15] [30.45] [60,75]
AddEngine1 AddWheels1 Inspect1
30 30 10
[0,0] [85.85]
Start Finish
[0,0] [60,60] [75.75]
AddEngine2 | AddWheels2 Inspect2
60 15 10

< AddWheels1 h |
| AddEngine1 ) | q Inspect1 | |

| AddEngine2 < Inspect2 |

AddWheels2

Figure 11.2  FILES: figures/jobshop-cpm.eps (Tue Nov 3 16:285 2009). Top: a representation
of the temporal constraints for the job-shop schedulingolenm of Figure??. The duration of each
action is given at the bottom of each rectangle. In solvirgggtoblem, we compute the earliest and
latest start times as the pai£S, LS], displayed in the upper left. The difference between these t
numbers is theslack of an action; actions with zero slack are on the critical pathown with bold

arrows. Bottom: the same solution shown as a timeline. Grefangles represent time intervals during
which an action may be executed, provided that the ordeidngtcaints are respected. The unoccupied
portion of a gray rectangle indicates the slack.




121

EngineHoists(1) I AddEngine1 AddEngine2 t
WheelStations(1) AddWheels1 b \| AddWheels2 I)
q Inspect1 [ / |
Inspectors(2)
Inspect2
r T T T T T T T T

T T T 1
0 10 20 30 40 50 60 70 80 20 100 110 120

Figure 11.3  FILES: figures/jobshop-resources.eps (Tue Nd¥ 16:23:05 2009) A solution to the
job-shop scheduling problem from FiguP@, taking into account resource constraints. The left-hand
margin lists the three reusable resources, and actionhavensaligned horizontally with the resources
they use. There are two possible schedules, depending aabsembly uses the engine hoist first;
we've shown the shortest-duration solution, which takes minutes.
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\
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(a) (b)

Figure 11.6  FILES: figures/reachable-sets.eps (Tue Nov 3 #43:29 2009).Schematic examples
of reachable sets. The set of goal states is shaded. Blaggrapdrrows indicate possible implemen-
tations ofh1 andhs, respectively. (a) The reachable set of an HRLAIn a states. (b) The reachable
set for the sequendé, h2]. Because this intersects the goal set, the sequence asthevgoal.
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Figure 11.7  FILES: figures/approximate-HLA.eps (Tue Nov 3 B:23:08 2009). Goal achieve-
ment for high-level plans with approximate descriptionieTset of goal states is shaded. For each
plan, the pessimistic (solid lines) and optimistic (daslieel) reachable sets are shown. (a) The plan
indicated by the black arrow definitely achieves the goalilevtne plan indicated by the gray arrow
definitely doesn't. (b) A plan that would need to be refinedHar to determine if it really does achieve
the goal.
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Figure 11.9  FILES: figures/plan-repair.eps (Tue Nov 3 16:239 2009). Before execution, the
planner comes up with a plan, here caliebole plan, to get fromS to G. The agent executes steps of
the plan until it expects to be in stafg but observes it is actually i@. The agent then replans for the
minimal repair plus continuation to reach
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(b) (©

Figure 11.11  FILES: figures/boids-neurogame.eps (Thu Nov 22:33:01 2009).(a) A simulated
flock of birds, using Reynold’s boids model. Image courtegys€ppe Randazzo, novastructura.net. (b
An actual flock of starlings. Image by Eduardo (pastaboypsem flickr). (c) Two competitive teams
of agents attempting to capture the towers in trERNgame. Image courtesy Risto Miikkulainen.
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Anything
AbstractObjects GeneralizedEvents
7 T~
Sets Numbers RepresentationalObjects Interval Places  PhysicalObjects Processes
"\
Categories Sentences Measurements Moments Things Stuff

N\ N\
Times  Weights Animals Agents  Solid Liquid Gas

N/

Humans

Figure 12.1  FILES: figures/everything.eps (Tue Nov 3 16:221 2009). The upper ontology of
the world, showing the topics to be covered later in the airapEach link indicates that the lower
concept is a specialization of the upper one. Specializatare not necessarily disjoint; a human is|
both an animal and an agent, for example. We will see in Se@favhy physical objects come under
generalized events.
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Meet(i,)) | i | J I

Starts (i,))

ey 1 ]
After(j,i) ! J

|I| Finishes(i,j)

[ ] Frekes
e
J

Figure 12.2  FILES: figures/allen-time-interval.eps (Tue Nv 3 16:22:20 2009). Predicates on
time intervals.

During(i,j)

Ll
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1789

Figure 12.3  FILES: figures/president-usa.eps (Tue Nov 3 183:22 2009).A schematic view of
the objectPresident (USA) for the first 15 years of its existence.
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Figure 12.4  FILES: figures/possible-worlds2.eps (Wed Nov 41:06:34 2009).Possible worlds
with accessibility relation& superman (S0lid arrows) and r.;s (dotted arrows). The propositioR
means “the weather report for tomorrow is rain” ahdneans “Superman’s secret identity is Clark

Kent.” All worlds are accessible to themselves; the arrawsfa world to itself are not shown.
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SubsetOf

MemberOf MemberOf

SisterOf

Figure 12.5 FILES: figures/semantic-network.eps (Tue Nov 36:23:41 2009).A semantic net-
work with four objects (John, Mary, 1, and 2) and four catéggr Relations are denoted by labeled
links.
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MemberOf

Figure 12.6 FILES: figures/flying-network.eps (Tue Nov 3 1&2:52 2009). A
fragment of a semantic network showing the representatidn tlee logical assertion
Fly(Shankar, NewYork, NewDelhi, Yesterday).
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Chapter 13. Quantifying Uncertainty

Cavity

Toothache Catch
Weather

decomposes decomposes
into into
Cavity
(b)

Catch

(a)

Toothache
Figure 13.4  FILES: figures/weather-independence.eps (Tugov 3 16:24:08 2009) figures/coin-

independence.eps (Tue Nov 3 16:22:33 2009)wo examples of factoring a large joint distribution into
smaller distributions, using absolute independence. (@tiiér and dental problems are independent.

(b) Coin flips are independent.
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@) (b)

Figure 13.5 FILES: figures/wumpus-stuck.eps (Tue Nov 3 16212 2009) figures/wumpus-
variables.eps (Tue Nov 3 16:24:13 2009)(a) After finding a breeze in both [1,2] and [2,1], the
agent is stuck—there is no safe place to explore. (b) Dimigibthe squares int&nown, Frontier,
and Other, for a query about [1,3].
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8 13 13 13 13

1,2B 2,2 1,2B 2,2 1,2B 2,2 1,2B 2,2 1,2B 2,2
OK OK OK OK OK

1,1 2,1B 8 1,1 2,1B 3,1 11 2,1B 34l 1,1 2,1B 34l 11 2,1B 3,1
OK | OK OK | OK OK | OK OK | OK OK | OK
02x02=0.04 02x0.8=0.16 0.8x02=0.16 02x02=004 02x08=0.16

(@ (b)

Figure 13.6  FILES: figures/wumpus-fringe-models.eps (Tu&lov 3 16:24:09 2009).Consistent
models for the frontier variableBs » and P31, showingP(frontier) for each model: (a) three models
with P13 = true showing two or three pits, and (b) two models with 3 = false showing one or two
pits.
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Figure 14.1  FILES: figures/dentist-network.eps (Tue Nov 3 &:22:37 2009).A simple Bayesian
network in whichWeather is independent of the other three variables &dthache and Catch are
conditionally independent, givefiavity.
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Figure 14.2  FILES: figures/burglary2.eps (Tue Nov 3 16:22:2 2009). A typical Bayesian net-
work, showing both the topology and the conditional probgktables (CPTs). In the CPTs, the letters
B, E, A, J, and M stand forBurglary, Earthquake, Alarm, JohnCalls, and MaryCalls, respec-
tively.




140 Chapter 14. Probabilistic Reasoning

MaryCalls

@ Earthquake

Burglary
Earthquake

(a) b)

Burglary

Figure 14.3  FILES: figures/burglary-mess.eps (Tue Nov 3 182:29 2009). Network structure
depends on order of introduction. In each network, we hatrediniced nodes in top-to-bottom order.
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(b)

Figure 14.4  FILES: figures/nondescendants.eps (Tue Nov 3 :P3:15 2009) figures/markov-
blanket.eps (Tue Nov 3 16:23:08 2009).(a) A node X is conditionally independent of its non-
descendants (e.g., thé;;s) given its parents (th&;s shown in the gray area). (b) A nod€ is
conditionally independent of all other nodes in the netwgiden its Markov blanket (the gray area).
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Figure 14.5

with discrete variablesJubsidy and Buys) and continuous variablegfarvest and Cost).

FILES: figures/continuous-net.eps (Tue Nov 3 1B2:34 2009). A simple network
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P(c | h, subsidly) P(c | h, ~subsidl) P(c | h)
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
o 182 5102 ) 5162
024 6 024 6 024 6 6
Coste 10 Harvesth Costc Harvesth Coste - 10 Harvesth

(@) (b) (©

Figure 14.6  FILES: . The graphs in (a) and (b) show the probability distributimeroCost as a
function of Harvest size, with Subsidy true and false, respectively. Graph (c) shows the distiobut
P(Cost | Harvest), obtained by summing over the two subsidy cases.
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1 14
Logit
0.8 1 0.8 4 Probit ===
_ 061 % 0.6 1
o
T H
0.4 1 < 044
0.2 1 0.2 1
0 0
0 4 6 8 10 12 0 2 4 6 8 10 12
Costc Costc
(a) (b)
Figure 14.7 FILES: . (a) A normal (Gaussian) distribution for the cost threshadntered on

1 =16.0 with standard deviatioa = 1.0. (b) Logit and probit distributions for the probability dfiys
given cost, for the parameterg = 6.0 ando = 1.0.
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P(=alb,e) P(alb,=e)

P(—alb,—e)
05 94 .

Figure 14.8  FILES: figures/enumeration-tree.eps (Tue Nov 36:22:41 2009).The structure of
the expression shown in Equatio??f. The evaluation proceeds top down, multiplying valuesglo
each path and summing at the “+” nodes. Notice the repetitiche paths forj andm.
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Figure 14.12  FILES: figures/rain-clusteringl.eps (Tue Nov3 16:23:27 2009) figures/rain-
clustering2.eps (Tue Nov 3 16:23:27 2009ja) A multiply connected network with conditional prob-
ability tables. (b) A clustered equivalent of the multiplyrmected network.
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Quality(B,)
O

 J

Recommendation(Cy, B;) Recommendation(C,, B|)
Recommendation(Cy, B,) Recommendation(C,, B,)
(b)

Figure 14.17  FILES: figures/new-14-16-1.eps (Tue Nov 3 1824 2009) figures/new-14-16-
2.eps (Tue Nov 3 16:23:14 2009) figures/new-14-16-1.eps€Mov 3 16:23:14 2009).(a) Bayes

net for a single custome?; recommending a single bodk,. Honest(C1) is Boolean, while the other
variables have integer values from 1 to 5. (b) Bayes net withdustomers and two books.

Recommendation(Cy, B})

(@)
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b56 b6
DDDD-E

Figure 14.18  FILES: figures/all-models-both.eps (Tue Nov 26:22:20 2009).Top: Some mem-
bers of the set of all possible worlds for a language with tastant symbolsk andJJ, and one binary
relation symbol, under the standard semantics for firseolaolgic. Bottom: the possible worlds under

database semantics. The interpretation of the constariagris fixed, and there is a distinct object for
each constant symbol.
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Quality(B,)

Recommendation(Cy, By) Recommendation(C,, B;)

Figure 14.19  FILES: figures/new-14-18.eps (Tue Nov 3 16:211 2009).Fragment of the equiva-
lent Bayes net wherA uthor(B2) is unknown.
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(@) (b) (c)

Figure 14.20 FILES: figures/handednessl.eps (Tue Nov 3 1@385 2009) fig-
ures/handedness2.eps (Tue Nov 3 16:22:56 2009) figures/tiadness3.eps (Tue Nov 3 16:22:56
2009). Three possible structures for a Bayesian network desgripémetic inheritance of handedness.
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Figure 14.21  FILES: figures/car-starts.eps (Tue Nov 3 16:232 2009). A Bayesian network
describing some features of a car’s electrical system agihen Each variable is Boolean, and the
true value indicates that the corresponding aspect of the vets¢h working order.
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&0 €4 [

(ii) (iii)

Figure 14.22  FILES: figures/telescope-nets.eps (Tue Nov 8:23:51 2009).Three possible net-
works for the telescope problem.
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Figure 14.23  FILES: figures/politics.eps (Tue Nov 3 16:2322009). A simple Bayes net with
Boolean variablesB = BrokeElectionLaw, I = Indicted, M = PoliticallyMotivated Prosecutor,
G = FoundGuilty, J = Jailed.
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Figure 15.1  FILES: figures/markov-processes.eps (Tue Nov1%$:23:08 2009)(a) Bayesian net-
work structure corresponding to a first-order Markov praoegth state defined by the variabl¥s. (b)
A second-order Markov process.
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Umbrella,_, Umbrella, Umbrella,

Figure 15.2  FILES: figures/umbrella-dbn.eps (Tue Nov 3 16:2:58 2009). Bayesian net-
work structure and conditional distributions describiig umbrella world. The transition model is
P(Rain; | Rain,—1) and the sensor model B( Umbrella; | Rain).
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& @&

Figure 15.3  FILES: figures/smoothing-dbn.eps (Tue Nov 3 183:45 2009).Smoothing computes
P(Xx | ei:+), the posterior distribution of the state at some past tingven a complete sequence of
observations fron to t.




158 Chapter 15. Probabilistic Reasoning over Time
Rain, Rain, Rain, Rain, Rain
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Figure 15.5 FILES: figures/umbrella-paths.eps (Tue Nov 3 183:59 2009). (a) Possible state
sequences foRain: can be viewed as paths through a graph of the possible statestatime step.
(States are shown as rectangles to avoid confusion withsnimda Bayes net.) (b) Operation of the
Viterbi algorithm for the umbrella observation sequefbese, true, false, true, true]. For eacht, we
have shown the values of the message;, which gives the probability of the best sequence reaching
each state at time Also, for each state, the bold arrow leading into it indésaits best predecessor as
measured by the product of the preceding sequence prayatilil the transition probability. Following
the bold arrows back from the most likely statenin.s gives the most likely sequence.
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(b) Posterior distribution over robot location after E1 = NSW,Eo= NS

Figure 15.7  FILES: figures/localization-figures-b.eps (Te Nov 3 16:23:07 2009)Posterior dis-
tribution over robot location: (a) one observatigh = N ST, (b) after a second observatidfy = N S.
The size of each disk corresponds to the probability thatdbet is at that location. The sensor error
rate ise =0.2.
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Figure 15.8  FILES: . Performance of HMM localization as a function of the lengthhe observa-
tion sequence for various different values of the sensar @nobabilitye; data averaged over 400 runs.
(a) The localization error, defined as the Manhattan digtémen the true location. (b) The Viterbi path
accuracy, defined as the fraction of correct states on thebfipath.
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Figure 15.9  FILES: figures/kalman-network.eps (Tue Nov 3 1@3:06 2009).Bayesian network
structure for a linear dynamical system with positdén velocity X, and position measuremen.
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Figure 15.10 FILES: . Stages in the Kalman filter update cycle for a random walk \&itbrior
given by o =0.0 andoo = 1.0, transition noise given by, = 2.0, sensor noise given by, = 1.0,

and a first observation; = 2.5 (marked on thec-axis). Notice how the predictio® (1) is flattened
out, relative toP(zo), by the transition noise. Notice also that the mean of théegpios distribution
P(z1|#1) is slightly to the left of the observatiom because the mean is a weighted average of th
prediction and the observation.

1)
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Figure 15.11  FILES: figures/kalman-2D.eps (Tue Nov 3 16:286 2009).(a) Results of Kalman
filtering for an object moving on th&—Y" plane, showing the true trajectory (left to right), a senés
noisy observations, and the trajectory estimated by Kalfii@ning. Variance in the position estimate
is indicated by the ovals. (b) The results of Kalman smogtliar the same observation sequence.
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@ (b)

Figure 15.12  FILES: figures/kalman-bird1l.eps (Tue Nov 3 1&3:06 2009) figures/kalman-
bird2.eps (Tue Nov 3 16:23:06 2009)A bird flying toward a tree (top views). (a) A Kalman filter will
predict the location of the bird using a single Gaussianaredton the obstacle. (b) A more realistic
model allows for the bird’s evasive action, predicting thatill fly to one side or the other.




165

R P(R
LTI Coaers g Y CBarers )
0.7 Fl 03

Ri | P(UD)
o—()
0.2

(@) (b)

Figure 15.13  FILES: figures/umbrella-1slice.eps (Tue Nov 36:23:58 2009) figures/robot-
dbnl.eps (Tue Nov 3 16:23:33 2009)(a) Specification of the prior, transition model, and sensof
model for the umbrella DBN. All subsequent slices are assutode copies of slice 1. (b) A simple

DBN for robot motion in the X-Y plane.
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Figure 15.14  FILES: . (a) Upper curve: trajectory of the expected valueBafttery, for an obser-
vation sequence consisting of all 5s except for 0s-a1 and¢ = 22, using a simple Gaussian error
model. Lower curve: trajectory when the observation remain0 fromt =21 onwards. (b) The same
experiment run with the transient failure model. Noticet tha transient failure is handled well, but the
persistent failure results in excessive pessimism abaub#ttery charge.
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Figure 15.15 FILES: figures/battery-persistence.eps (Tudlov 3 16:22:26 2009).(a) A DBN
fragment showing the sensor status variable required fatativeg persistent failure of the battery sen-
sor. (b) Upper curves: trajectories of the expected valuBaftery, for the “transient failure” and
“permanent failure” observations sequences. Lower curpesbability trajectories forBM Broken
given the two observation sequences.
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Figure 15.16  FILES: figures/dbn-unrolling.eps (Tue Nov 3 182:36 2009).Unrolling a dynamic
Bayesian network: slices are replicated to accommodatetikervation sequendémbrella.3. Fur-
ther slices have no effect on inferences within the obsemateriod.
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Figure 15.18 FILES: figures/umbrella-particle.eps (Tue No 3 16:23:59 2009).The particle fil-
tering update cycle for the umbrella DBN wifli = 10, showing the sample populations of each state|.
(a) At timet, 8 samples indicateain and 2 indicate~rain. Each is propagated forward by sampling
the next state through the transition model. At titrel, 6 samples indicatezin and 4 indicate-rain.

(b) —umbrella is observed at + 1. Each sample is weighted by its likelihood for the obseoratas
indicated by the size of the circles. (c) A new set of 10 samdegenerated by weighted random
selection from the current set, resulting in 2 samples tiditaterain and 8 that indicate.rain.
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Figure 15.19  FILES: figures/classical-DA.eps (Tue Nov 3 182:33 2009).(a) Observations made

of object locations in 2D space over five time steps. Eachre@ten is labeled with the time step

but does not identify the object that produced it. (b—c) Pdsdiypotheses about the underlying ob-
ject tracks. (d) A hypothesis for the case in which falseratgrdetection failures, and track initia-
tion/termination are possible.
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(b)

Figure 15.20 FILES: figures/traffic-upstream.eps (Tue Nov 316:23:58 2009) figures/traffic-
downstream.eps (Tue Nov 3 16:23:57 2009)mages from (a) upstream and (b) downstream surveil-
lance cameras roughly two miles apart on Highway 99 in Saeram California. The boxed vehicle
has been identified at both cameras.
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Figure 15.21  FILES: figures/switching-kf.eps (Tue Nov 3 1&3:50 2009).A Bayesian network
representation of a switching Kalman filter. The switchiagiableS; is a discrete state variable whose
value determines the transition model for the continuoatestariables<;. For any discrete statg
the transition modeP(X:+1|X¢, St =1) is a linear Gaussian model, just as in a regular Kalman filtef.
The transition model for the discrete stalS;+1|S:), can be thought of as a matrix, as in a hidden
Markov model.
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Chapter 16. Making Simple Decisions
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Figure 16.1  FILES: figures/cash-machine-and-decomposdltiy.eps (Tue Nov 3 13:30:24 2009).
(a) A cycle of exchanges showing that the nontransitiveguegfcesA = B = C > A result in
irrational behavior. (b) The decomposability axiom.
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Figure 16.2  FILES: figures/utility-curve.eps (Tue Nov 3 1624:00 2009). The utility of money.
(a) Empirical data for Mr. Beard over a limited range. (b) Aitsal curve for the full range.
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Error in utility estimate

Figure 16.3  FILES: . Plot of the error in each of utility estimates and of the distribution of the
maximum ofk estimates fok = 3, 10, and 30.
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Figure 16.4  FILES: figures/strict-dominance.eps (Tue Nov 33:49:56 2009).Strict dominance.
(a) Deterministic: Option A is strictly dominated by B buttray C or D. (b) Uncertain: A is strictly
dominated by B but not by C.
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Figure 16.5 FILES: . Stochastic dominance. (&}; stochastically dominateS> on cost. (b)
Cumulative distributions for the negative cost$fand.S..
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Airport Site

(e
‘®0

Figure 16.6  FILES: figures/airport-id.eps (Tue Nov 3 16:2219 2009).A simple decision network
for the airport-siting problem.
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Airport Site

AN

Figure 16.7  FILES: figures/airport-au-id.eps (Tue Nov 3 1622:19 2009).A simplified represen-
tation of the airport-siting problem. Chance nodes comesing to outcome states have been factoreg
out.
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Figure 16.8  FILES: figures/3cases.eps (Tue Nov 3 16:22:100H). Three generic cases for the
value of information. In (a)q: will almost certainly remain superior t@,, so the information is not
needed. In (b), the choice is unclear and the informationusial. In (c), the choice is unclear, but
because it makes little difference, the information is kadsiable. (Note: The fact thdf> has a high
peak in (c) means that its expected value is known with higbeeainty thar/;.)
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Sex
Postcoarctectomy
Syndrome
Tach 1
Tachycardia Paradoxical
Failure Hypertension
To Thrive
Aortic
D Intercostal Aneurysm
yspnea Recession
Paraplegia
AAAA
Heart Treatment Intermediate Late
Failure Result Result
YY)
CVA
Pulmonary Aortic
Crepitations { Dissection
/
. Mpyocardial
Cardiomegaly I}{ farction
U =
Figure 16.10  FILES: figures/heart-infl-diagram.eps (Tue No 3 16:23:01 2009).Influence dia-
gram for aortic coarctation (courtesy of Peter Lucas).
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®

(ii) (iii)

Figure 16.11  FILES: figures/3candy.eps (Tue Nov 3 16:22:1MR9). Three proposed Bayes nets
for the Surprise Candy problem, Exercize
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®

(ii) (iii)

Figure 16.12  FILES: figures/3candy.eps (Tue Nov 3 16:22:1MR9). Three proposed Bayes nets
for the Surprise Candy problem, Exercize
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3 0.8
0.1 L] 0.1
2 =] ' /[\ '
1 START
1 2 3 4

(2) (®)

Figure 17.1  FILES: figures/sequential-decision-world.ep (Tue Nov 3 16:23:43 2009).(a) A
simple4 x 3 environment that presents the agent with a sequentialidagisoblem. (b) lllustration of
the transition model of the environment: the “intended”caube occurs with probability 0.8, but with
probability 0.2 the agent moves at right angles to the iredrdirection. A collision with a wall results
in no movement. The two terminal states have reward +1 antesfectively, and all other states have
a reward of —0.04.
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| | > - | > | >
V== D =

— — —

? ? =n R(s) <-1.6284  —0.4278 < R(s) <—0.0850

1 2 3 4 44.4.* +++*

—-0.0221 < R(s) <0 R(s)>0
(a) (b)

Figure 17.2  FILES: figures/sequential-decision-policiesps (Tue Nov 3 16:23:42 2009)a) An
optimal policy for the stochastic environment wit{s) = —0.04 in the nonterminal states. (b) Optimal
policies for four different ranges a®(s).
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3 0.812 | 0.868 | 0.918
2 | 0762 0660 | [=1]
1 0.705 | 0.655 | 0.611 0.388
1 2 3 4

Figure 17.3  FILES: figures/sequential-decision-valuesps (Tue Nov 3 16:23:42 2009)The util-
ities of the states in thé x 3 world, calculated withy =1 and R(s) = — 0.04 for nonterminal states.
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Utility estimates
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(@) (b)

Figure 17.5  FILES: . (a) Graph showing the evolution of the utilities of selecséates using value
iteration. (b) The number of value iteratiokgequired to guarantee an error of at mest ¢ - Rmax,
for different values of:, as a function of the discount facter
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1
Max error
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©
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Number of iterations
Figure 17.6  FILES: . The maximum errot|U; — U|| of the utility estimates and the policy loss
|[lU™i — U]|, as a function of the number of iterations of value iteration
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(b)

0.2

0.4 0.6 0.8 1
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Figure 17.8  FILES: . (a) Utility of two one-step plans as a function of the initiadlief stateb(1)
for the two-state world, with the corresponding utility fition shown in bold. (b) Utilities for 8 distinct
two-step plans. (c) Utilities for four undominated twoystdans. (d) Utility function for optimal eight-

step plans.
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At—2 At—l At Ar+ 1 Ar+2

Figure 17.10  FILES: figures/generic-ddn.eps (Tue Nov 3 16253 2009). The generic structure
of a dynamic decision network. Variables with known valuesshaded. The current timedsnd the
agent must decide what to do—that is, choose a valugifofThe network has been unrolled into the
future for three steps and represents future rewards, dsawéhe utility of the state at the look-ahead
horizon.
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Figure 17.11  FILES: figures/pomdp-tree.eps (Tue Nov 3 16:220 2009).Part of the look-ahead
solution of the DDN in Figure 17.10. Each decision will begakn the belief state indicated.
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(a) (b) o
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() E H d o
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Figure 17.12  FILES: figures/morra-trees.eps (Tue Nov 3 16211 2009).(a) and (b): Minimax

game trees for two-finger Morra if the players take turns jplgypure strategies. (c) and (d): Parame-
terized game trees where the first player plays a mixed giafiehe payoffs depend on the probability
parametery or q) in the mixed strategy. (e) and (f): For any particular vabfithe probability parame-

ter, the second player will choose the “better” of the twda, so the value of the first player's mixed
strategy is given by the heavy lines. The first player willab® the probability parameter for the mixed

strategy at the intersection point.
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FILES: figures/extensive-game.eps (Tue Nov 8:22:45 2009).Extensive form of

Figure 17.13

a simplified version of poker.
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r| -1 |10 50| -1 | -1 | -1 T I S | S

-1 -1 -1 Start

-] -1 |- S50 | +1 | 41|+ +1 [ +1 | +1 || +1
(a) (b)

Figure 17.14  FILES: figures/grid-mdp-figure.eps (Tue Nov 3 &:22:55 2009). (a) 3 x 3 world
for Exercise??. The reward for each state is indicated. The upper rightregisea terminal state. (b)
101 x 3 world for Exercise?? (omitting 93 identical columns in the middle). The startstaas reward
0.




1

LEARNING FROM
EXAMPLES

197




198 Chapter 18. Learning from Examples

X > X
(@) (b) (©) (d
Figure 18.1  FILES: figures/xy-plot.eps (Tue Nov 3 16:24:13@D9). (a) Example(x, f(z)) pairs
and a consistent, linear hypothesis. (b) A consistent,ade@rpolynomial hypothesis for the same datg
set. (c) A different data set, which admits an exact degrpelnomial fit or an approximate linear fit.
(d) A simple, exact sinusoidal fit to the same data set.
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Patrons?

Some Full

[Yes|] | waitEstimate? |

>60
Alternate?

No Yes

| Reservation? || Fri/Sat? | |Yes| | Alternate? |
No Yes No Yes

No Yes [ Yes| | Raining? |

No Yes

No Yes

Figure 18.2  FILES: figures/restaurant-tree.eps (Tue Nov 3 8:23:29 2009).A decision tree for
deciding whether to wait for a table.
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1 8| (4 |6 '8 12 1 3 4 6 8 12
BEHEHEBILI (250709 N10f11]
Patrons?

French Burger None Some Full

4 8 3 12 18 6 B8 [&he
Bl [HB i &

m =

(a) (b)

Figure 18.4  FILES: figures/restaurant-stub.eps (Tue Nov 3 @:23:28 2009). Splitting the ex-

amples by testing on attributes. At each node we show theiymoglight boxes) and negative (dark
boxes) examples remaining. (a) Splitting ©ype brings us no nearer to distinguishing between posi
tive and negative examples. (b) Splitting Betrons does a good job of separating positive and negative
examples. After splitting oRatrons, Hungry is a fairly good second test.
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Patrons?

None Some Full

|Yes| | Hungry? |

French ltalian

Fri/Sat?

No Yes

No Yes

Figure 18.6  FILES: figures/induced-restaurant-tree.epsTue Nov 3 16:23:04 2009).The deci-
sion tree induced from the 12-example training set.
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Figure 18.7  FILES: . A learning curve for the decision tree learning algorithmi@® randomly
generated examples in the restaurant domain. Each dataiptie average of 20 trials.
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60

Validation Set Error—+—
Training Set Error——x--—

Error rate

Tree size

Figure 18.9  FILES: . Error rates on training data (lower, dashed line) and vélidadata (upper,
solid line) for different size decision trees. We stop whie training set error rate asymptotes, and
then choose the tree with minimal error on the validationisethis case the tree of size 7 nodes.
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No No
| Patrons(x, Some) |—>| Patrons(x, Full) A Fri/Sat(x) |—>m
es Yes

Y
/ Y
Yes Yes

Figure 18.10  FILES: figures/decision-list.eps (Tue Nov 3 182:37 2009).A decision list for the
restaurant problem.
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Decision list --------
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Figure 18.12  FILES: . Learning curve for [ECISION-LIST-LEARNING algorithm on the restaurant
data. The curve for BCISION-TREE-LEARNING is shown for comparison.
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Figure 18.13  FILES: . (a) Data points of price versus floor space of houses for sakeikeley,
CA, in July 2009, along with the linear function hypothedigttminimizes squared error losg: =
0.232z + 246. (b) Plot of the loss functiod ; (w1z; + wo — y;)? for various values ofvo, w1 . Note
that the loss function is convex, with a single global minimu
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N

Figure 18.14  FILES: figures/diamond.eps (Wed Nov 4 14:45:53009). Why L, regularization
tends to produce a sparse model. (a) Withregularization (box), the minimal achievable loss (con-
centric contours) often occurs on an axis, meaning a weigtgro. (b) WithL- regularization (circle),
the minimal loss is likely to occur anywhere on the circlejigg no preference to zero weights.
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Figure 18.15  FILES: . (a) Plot of two seismic data parameters, body wave magnituded surface

wave magnitudexz, for earthquakes (white circles) and nuclear explosiotacicircles) occurring
between 1982 and 1990 in Asia and the Middle East (?). Alswshs a decision boundary between
the classes. (b) The same domain with more data points. Tte@akes and explosions are no longe

linearly separable.
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Figure 18.16  FILES: . (a) Plot of total training-set accuracy vs. number of itienas through the
training set for the perceptron learning rule, given thetteprake/explosion data in Figure 18.14(a).
(b) The same plot for the noisy, non-separable data in Fig@r&4(b); note the change in scale of the
z-axis. (¢) The same plot as in (b), with a learning rate scleed(¢) = 1000/(1000 + ¢).
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@) (b) (©

Figure 18.17  FILES: . (a) The hard threshold functiofihreshold(z) with 0/1 output. Note that
the function is nondifferentiable at=0. (b) The logistic functionLogistic(z) = % also known
as the sigmoid function. (c) Plot of a logistic regressiopdthesishw (X) = Logistic(w-X) for the data
shown in Figure 18.14(b).
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Figure 18.18 FILES: . Repeat of the experiments in Figure 18.15 using logisticesgjon and
squared error. The plot in (a) covers 5000 iterations rathan 1000, while (b) and (c) use the same|
scale.
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Bias Weight
=1 a;= g(in))

Input Input  Activation
Links Function  Function

Qupu

Figure 18.19  FILES: figures/neuron-unit.eps (Wed Nov 4 11:213 2009).A simple mathemat-
ical model for a neuron. The unit’s output activationuis=g(>_"'_ , wi,ja:), wherea; is the output
activation of uniti andw;_; is the weight on the link from unitto this unit.
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O

Figure 18.20  FILES: figures/neural-net.eps (Wed Nov 4 11:082 2009). (a) A perceptron net-
work with two inputs and two output units. (b) A neural netwevith two inputs, one hidden layer of
two units, and one output unit. Not shown are the dummy inpotstheir associated weights.
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Figure 18.21  FILES: figures/perceptron-linear.eps (Tue No 3 16:23:17 2009).Linear separa-

bility in threshold perceptrons. Black dots indicate a painthe input space where the value of the
function is 1, and white dots indicate a point where the vadu@. The perceptron returns 1 on the
region on the non-shaded side of the line. In (c), no suchdiists that correctly classifies the inputs.
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Figure 18.22  FILES: . Comparing the performance of perceptrons and decisios.tigg Percep-
trons are better at learning the majority function of 11 itspyb) Decision trees are better at learning

the WillWait predicate in the restaurant example.
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Figure 18.23  FILES: . (a) The result of combining two opposite-facing soft thi@dHunctions to
produce a ridge. (b) The result of combining two ridges tadpice a bump.
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Figure 18.25 FILES: . (a) Training curve showing the gradual reduction in erromesghts are
modified over several epochs, for a given set of examplesddbtaurant domain. (b) Comparative
learning curves showing that decision-tree learning dtightly better on the restaurant problem than
back-propagation in a multilayer network.
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(k=1) (k=5)

Figure 18.26 FILES: figures/earthquake-nnl.eps (Tue Nov 3 6t22:38 2009)
figures/earthquake-nn5.eps (Tue Nov 3 16:22:38 2009). (a) A k-nearest-neighbor model
showing the extent of the explosion class for the data in féidiB.14, withk =1. Overfitting is
apparent. (b) Wittk = 5, the overfitting problem goes away for this data set.
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Figure 18.27  FILES: . The curse of dimensionality: (a) The length of the averagghimrhood

for 10-nearest-neighbors in a unit hypercube with 1,000,00ints, as a function of the number of
dimensions. (b) The proportion of points that fall withinhért shell consisting of the outer 1% of the
hypercube, as a function of the number of dimensions. Sairipten 10,000 randomly distributed

points.




220

Chapter 18.

Learning from Examples

8 1 Q 8 o
N _Tolg.
61 IAN /,” &\G\O/@/Q‘ 6 © ”J; Q'fen,o,”@} o
5 | e | 5 lo © L
4 4 -
3] o b 3{ o C
A ) \\ 1 [}
24 217
14 ¢ © 1{ o °
0 . 0 .
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
(a) (b)
8 o 8 o
7 N 7
ST o o
6 O.\/ N S-oi 0 6 ° /”O\O*o\ °°
5 Jo 9 5 o R
4 kY 4 /
3 of 3, 3 o/ N
o] \ /o \
21 | 21 /
146 b\ 1 /(5/ O\\
0 : oL .
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
(c) (d)
Figure 18.28  FILES: . Nonparametric regression models: (a) connect the dot8-(fgarest neigh-
bors average, (c) 3-nearest-neighbors linear regres@ptycally weighted regression with a quadratic
kernel of widthk = 10.
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Figure 18.29  FILES: . A quadratic kermnelC(d) = max(0,1 — (2|z|/k)?), with kernel width
k =10, centered on the query poiat= 0.
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(@) (b)

Figure 18.30  FILES: . Support vector machine classification: (a) Two classes biftpgblack and
white circles) and three candidate linear separators. Kig) aximum margin separator (heavy line),
is at the midpoint of thenargin (area between dashed lines). Tpport vectors (points with large
circles) are the examples closest to the separator.
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(b)

Figure 18.31  FILES: . (a) A two-dimensional training set with positive examplasbéack circles
and negative examples as white circles. The true decisiomdary, z? + 22 < 1, is also shown.
(b) The same data after mapping into a three-dimensionat ispace(z?, 23, v/2x122). The circular
decision boundary in (a) becomes a linear decision bouriddhyee dimensions. Figure 18.29(b) gives
a closeup of the separator in (b).
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Figure 18.32  FILES: figures/ensemble-expressiveness.g@sie Nov 3 16:22:41 2009)lllustra-

tion of the increased expressive power obtained by enselmtring. We take three linear threshold
hypotheses, each of which classifies positively on the utethaide, and classify as positive any exam-
ple classified positively by all three. The resulting triatag region is a hypothesis not expressible in
the original hypothesis space.
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Figure 18.33  FILES: figures/boosting.eps (Tue Nov 3 16:22822009). How the boosting algo-
rithm works. Each shaded rectangle corresponds to an exathpl height of the rectangle corresponds
to the weight. The checks and crosses indicate whether the@r was classified correctly by the
current hypothesis. The size of the decision tree indictitesveight of that hypothesis in the final
ensemble.
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Figure 18.35 FILES: . (a) Graph showing the performance of boosted decision suwmith X' =5
versus unboosted decision stumps on the restaurant datBhélproportion correct on the training set
and the test set as a function &f, the number of hypotheses in the ensemble. Notice that thedée
accuracy improves slightly even after the training accymr@aches 1, i.e., after the ensemble fits theg

data exactly.




227

O/ I35 78 7
PD1O724567 49

Figure 18.36  FILES: figures/easy-hard.eps (Wed Nov 4 15:384 2009). Examples from the
NIST database of handwritten digits. Top row: examples gitsli0—9 that are easy to identify. Bottom
row: more difficult examples of the same digits.
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Figure 18.37  FILES: . Learning curves for five learning algorithms on a common tdséte that
there appears to be more room for improvement in the hor&@alitection (more training data) than in
the vertical direction (different machine learning alglon). Adapted from ? (?).
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false negative. (c) The hypothesis is generalized. (d) gefabsitive. (e) The hypothesis is specialized

Chapter 19. Knowledge in Learning

+ + + +
+ * R + |+

+ + + +

+

++ ++ ++ ++

(a) (b) (© (d) ©)

Figure 19.1  FILES: figures/cbh.eps (Tue Nov 3 16:22:32 2009)a) A consistent hypothesis. (b) A
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This region all inconsistent
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This region all inconsistent

Figure 19.4  FILES: figures/version-space.eps (Tue Nov 3 1H1:02 2009). The version space
contains all hypotheses consistent with the examples.
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Figure 19.5  FILES: figures/vs-proof.eps (Tue Nov 3 16:24:08009). The extensions of the mem-
bers of G and.S. No known examples lie in between the two sets of boundaries.
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Prior -
knowledge

:

Knowledge-based

inductive learning Hypotheses  |——= Predictions

Observations

Figure 19.6  FILES: figures/cumulative-learning.eps (Tue Mv 3 16:22:36 2009).A cumulative
learning process uses, and adds to, its stock of backgroumal&dge over time.
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Chapter 19. Knowledge in Learning

| Simplify(1 x (0+X),w) |

Simplify(0+X,w)

Rewrite(1 x (0+X),v) |
Yes, {v/0+X}

Rewrite(0+X,v") Simplify(X,w)
Yes, {v'/ X} {w/X}
| ArithmeticUnknown(X) |
| Simplify(x x (y+2),w) | Yes, { }

Simplify(y+z,w)

Sinpi)

Yes, {y/0,v" z} w/z}

Primitive(z)

| | ArithmeticUnknown(z) | ‘

Yes, { }

|| Rewrite(x x (y+2),v) ||

Yes, {x/1,v/y+z}

Figure 19.7  FILES: figures/simplify-proof2.eps (Tue Nov 3 6:23:44 2009).Proof trees for the
simplification problem. The first tree shows the proof for thigiinal problem instance, from which we

can derive
ArithmeticUnknown(z) = Simplify(1 x (0+ z),2) .

The second tree shows the proof for a problem instance wlitoaktants replaced by variables, from
which we can derive a variety of other rules.
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0.9

0.8

0.7

[y
[N (Y
,": Yo fsy

0.6

0.5

Proportion correct on test set

0.4

0 20 40 60 80 100 120 140
Training set size

Figure 19.9 FILES: . A performance comparison betweere©SION-TREE-LEARNING and
RBDTL on randomly generated data for a target function tlegiethds on only 5 of 16 attributes.
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H:1[19-37] H:6[79-88]

H:3[71-84]

H:4[93-108]

H:2[41-64]
H:7[99-106]

2mhr - Four-helical up-and-down bundle 1omd - EF-Hand
(a) (b)

Figure 19.10 FILES: figures/pdb2mhr.eps (Tue Nov 3 16:23:1%2009) figures/pdblomd.eps
(Tue Nov 3 16:23:15 2009).(a) and (b) show positive and negative examples, respégtivbthe
“four-helical up-and-down bundle” concept in the domainpobtein folding. Each example struc-
ture is coded into a logical expression of about 100 congieath aslotalLength(D2mhr,118) A
NumberHelices(D2mhr,6) A .... From these descriptions and from classifications such as
Fold(FOUR-HELICAL-UP-AND-DOWN-BUNDLE, D2mhr), the ILP system ROGOL (?) learned the
following rule:

Fold(FOUR-HELICAL-UP-AND-DOWN-BUNDLE, p) <
Heliz(p, h1) A Length(hi, HIGH) A Position(p, hi,n)
A (1 <n < 3) A Adjacent(p, hi, h2) A Heliz(p, h2) .

This kind of rule could not be learned, or even representgdyrbattribute-based mechanism such as
we saw in previous chapters. The rule can be translated imgtigh as “ Proteirp has fold class “Four-
helical up-and-down-bundle” if it contains a long helix at a secondary structure position between 1
and 3 andh, is next to a second helix.”
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George M Mum

Spencer M Kydd Elizabeth M Philip Margaret

DianaM Charles Anne X Mark  Andrew X Sarah  Edward M Sophie

/NN N

William Harry  Peter Zara Beatrice Eugenie Louise James

Figure 19.11  FILES: figures/familyl.eps (Tue Nov 3 16:22:48009).A typical family tree.
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=1 Parent(x,z) V =1 Parent(z,y) V Grandparent(x,y) Parent(George,Elizabeth)
{x/George, z/Elizabeth?\
- Parent(Elizabeth,y) VvV Grandparent(George,y) Parent(Elizabeth,Anne)
{y/Anne‘}\
Grandparent(George,Anne) = Grandparent(George,Anne)

Figure 19.13  FILES: figures/inverse-proof.eps (Tue Nov 3 183:05 2009). Early steps in an
inverse resolution process. The shaded clauses are gathbsainverse resolution steps from the clause
to the right and the clause below. The unshaded clausesoandtie Descriptions and Classifications

(including negated’lassifications).
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= Father(x,y) vV P(x,y)

=1 P(George,y) V Ancestor(George,y)

‘\X/GeM

Father(George,y)

V. Ancestor(George,y)

Figure 19.14  FILES: figures/new-predicate.eps (Tue Nov 3 183:14 2009). An inverse resolu-

tion step that generates a new predicBte
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Posterior probability of hypothesis

0 2 4 6 8

f** I

Probability that next candy is lime

0.9 1
0.8 1
0.7 1
0.6 1
0.5 1

0.4

2 4 6 8

10

10
Number of observations ith Number of observations ith
(a) (b)
Figure 20.1  FILES:. (a) Posterior probabilitie®(h; | d1, . .., d~) from Equation 7). The num-

ber of observationgV ranges from 1 to 10, and each observation is of a lime candyBdlyesian
., dn) from Equation ??).

predictionP(dN+1 = lime | dl, ..
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Chapter 20.

Learning Probabilistic Models

P(F=cherry)

0

P(F=cherry)

0
F P(W=red| F)
cherry 0,
lime 0,
() (b)

Figure 20.2  FILES: figures/ml-networks.eps (Tue Nov 3 16:231 2009). (a) Bayesian network
model for the case of candies with an unknown proportion efiéés and limes. (b) Model for the case
where the wrapper color depends (probabilistically) ondéwedy flavor.
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< 1

(%]

g 0.9
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208
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g 07

o

c

£ 06

3 Decision tree

9 0.5 {J Naive Bayes--------

o

0.4 r v v r \
0 20 40 60 80 100
Training set size

Figure 20.3  FILES:. The learning curve for naive Bayes learning applied to tiséatgrant problem
from Chapter 18; the learning curve for decision-tree leagiis shown for comparison.
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Chapter 20. Learning Probabilistic Models

@
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0 0102030405060.70809 1

X

(b)

Figure 20.4

FILES: . (a) A linear Gaussian model describedvas 01 x + 02 plus Gaussian noise
with fixed variance. (b) A set of 50 data points generated ftioisimodel.
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2.5 551 6 o
2 ] 5 [30,10F
2,2 4 "
& 1.5 1 [] &
1] e A 1] 3
o 11] o)
a 1 o
2
0.5 1 1
0 v r r r 0 v r e r
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1
Parametef Parametef
(@) (b)
Figure 20.5  FILES: . Examples of théetala, b] distribution for different values dfu, b].
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Figure 20.6  FILES: figures/bayesian-learning-network.ep (Tue Nov 3 16:22:26 2009). A
Bayesian network that corresponds to a Bayesian learniogeps. Posterior distributions for the pa-
rameter variable®, 01, and©, can be inferred from their prior distributions and the evide in the
Flavor; and Wrapper; variables.
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Density

(a) ' ()

Figure 20.7 FILES: . (a) A 3D plot of the mixture of Gaussians from Figure 20.11(&)) A
128-point sample of points from the mixture, together witlo tyuery points (small squares) and their
10-nearest-neighborhoods (medium and large circles).
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Density Density ! Density

Figure 20.8 FILES: . Density estimation using-nearest-neighbors, applied to the data in Fig-
ure 20.7(b), folk = 3, 10, and40 respectivelyk = 3 is too spiky, 40 is too smooth, and 10 is just about]
right. The best value fot can be chosen by cross-validation.




249

Density Density Density

LN
o
G ".’&‘
Ao i ‘\ /;,,’,’,’,"l M
lfb\ //I ' ‘ Ill iy O
g AN
{
0 0.2 ) g 0 0.2, 9»
2 0.2
%0608 = 0 %0608 = 0

Figure 20.9 FILES: . Kernel density estimation for the data in Figure 20.7(bjng<saussian
kernels withw = 0.02, 0.07, and0.20 respectivelyw = 0.07 is about right.
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54

HeartDisease

(a) (b)

Figure 20.10  FILES: figures/313-heart-disease.eps (Tue M8 16:22:09 2009)(a) A simple di-
agnostic network for heart disease, which is assumed to ligddarm variable. Each variable has three
possible values and is labeled with the number of indepdnuiameters in its conditional distribu-
tion; the total number is 78. (b) The equivalent network witbartDisease removed. Note that the

symptom variables are no longer conditionally independggren their parents. This network requires

708 parameters.
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1; 1
0.8 [ ‘ 0.8
06 0.6
04 . N 0.4
0.2 1 0.2 0.2
0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

@ (b) (©)

Figure 20.11  FILES: . (a) A Gaussian mixture model with three components; the esifeft-

to-right) are 0.2, 0.3, and 0.5. (b) 500 data points sampleah fthe model in (a). (c) The model
reconstructed by EM from the data in (b).
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700 4 o -1975
600 1 -1980
500 A -1985
3 400 - 3 -1990
3 300 - 8 -1995
£ <
T 200 | ' -2000
) 5o
- 0 1 4 7
100 - -2015
200 | -2020
r r r -2025 r v r r r \
0 5 10 15 20 0 20 40 60 80 100 120
Iteration number Iteration number
(a) (b)
Figure 20.12  FILES: . Graphs showing the log likelihood of the dafa,as a function of the EM
iteration. The horizontal line shows the log likelihood axting to the true model. (a) Graph for the
Gaussian mixture model in Figure 20.11. (b) Graph for theeB&n network in Figure 20.13(a).
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P(Bag=1)

0

Bag| P(F=cherry | B)

(a)

(b)

Figure 20.13  FILES: figures/mixture-networks.eps (Tue Now3 16:23:11 2009).(a) A mixture
model for candy. The proportions of different flavors, wrapp presence of holes depend on the bag
which is not observed. (b) Bayesian network for a Gaussiattiuré. The mean and covariance of the

observable variableX depend on the componett
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PR Ry | P(R)) PR Ro | PRR)| | Ri| P(RY)| | Ra| P(R3)
o7 1] 8 o) 8 D8] D18

0.7 S 1 03 0.7 S .

R, | P(U)) R, [ PO [ R, | PWy| [ Ry | P(U3)
t ] 09 t | 09 t 109 t | 09
S|l 02 f 1 02 S|l 02 f 1 02

Figure 20.14  FILES: figures/dbn-unrolling.eps (Tue Nov 3 1£2:36 2009).An unrolled dynamic
Bayesian network that represents a hidden Markov modetétepf Figure 15.16).
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256 Chapter 21. Reinforcement Learning
>~ >~ . 3 | 0812 | 0868 | 0.918
1 1 [-1] 2 | o762 0.660 | [=1]

1 —~~ - —~~ 1 0.705 0.655

0.611 0.388

(a) (b)

Figure 21.1 FILES: figures/4x3-optimal-policy.eps (Tue No

figures/sequential-decision-values.eps (Tue Nov 3 16:22: 2009). (a) A policy = for the
4 x 3 world; this policy happens to be optimal with rewards Bfs) = — 0.04 in the nonterminal
states and no discounting. (b) The utilities of the stateékéd x 3 world, given policyr.

3 16:22:11 2009)




257

Utility estimates

0.6
1

0.5
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0.8 1 =
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£
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o
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0 20 40 60 80 100 0 20 40 60 80 100
Number of trials Number of trials
() (b)

Figure 21.3  FILES: . The passive ADP learning curves for thex 3 world, given the optimal
policy shown in Figure 21.1. (a) The utility estimates foredested subset of states, as a function of the
number of trials. Notice the large changes occurring ardted’8th trial—this is the first time that the
agent falls into the-1 terminal state at (4,2). (b) The root-mean-square erra fggpendix A) in the
estimate for/ (1, 1), averaged over 20 runs of 100 trials each.
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0.6
1
0.5
® 2
T S 0.4
£ o6 £
3 So03
) 0.4 "
= B h "
5 s 02
o
0 v v v v v 0 v v v r \
0 100 200 300 400 500 0 20 40 60 80 100
Number of trials Number of trials
@) (b)
Figure 21.5 FILES: . The TD learning curves for thé x 3 world. (a) The utility estimates for a
selected subset of states, as a function of the number &f.tila) The root-mean-square error in the
estimate forU (1, 1), averaged over 20 runs of 500 trials each. Only the first li@glstare shown to
enable comparison with Figure 21.3.
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RMS error, policy loss

2
RMS error
1.5 Policy loss --------
1 4
0.5 1
[ -
e
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Number of trials
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(b)

Figure 21.6  FILES: figures/4x3-greedy-adp-policy.eps (TetNov 3 16:22:10 2009)Performance
of a greedy ADP agent that executes the action recommendekebyptimal policy for the learned
model. (a) RMS error in the utility estimates averaged ower nine nonterminal squares. (b) The
suboptimal policy to which the greedy agent converges mphiticular sequence of trials.
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2.2
1.4
2 1 < )
184 = 812 RMS error
e - Policy loss --------
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(b)

Figure 21.7

policy loss.

FILES: . Performance of the exploratory ADP agent. usitg = 2 andN, = 5. (a)
Utility estimates for selected states over time. (b) The R&Sr in utility values and the associated
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— T

Figure 21.9  FILES: figures/cart-pole.eps (Tue Nov 3 16:22282009). Setup for the problem of
balancing a long pole on top of a moving cart. The cart can Begeleft or right by a controller that
observes, 0, ¢, andd.
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Figure 21.10  FILES: figures/heliComposite.eps (Tue Nov 3 183:02 2009).Superimposed time-
lapse images of an autonomous helicopter performing a vifigudt “nose-in circle” maneuver. The
helicopter is under the control of a policy developed by tlesRsuUs policy-search algorithm. A
simulator model was developed by observing the effects nbwa control manipulations on the real
helicopter; then the algorithm was run on the simulator nhoslernight. A variety of controllers were
developed for different maneuvers. In all cases, perfooadar exceeded that of an expert human pilot
using remote control. (Image courtesy of Andrew Ng.)
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Chapter 22. Natural Language Processing

who
speaker
speak
5409

dr

professor
robert
michael
mr

will
(
received
has

is

appointment

\
cavalier
stevens
christel

that
by
speakers

seminar
reminder
theater
artist
additionally

here

Postfix

Target

Prefix

Figure 22.2  FILES: figures/freitag.eps (Tue Nov 3 16:22:53Q09). Hidden Markov model for the

speakerof a talk announcement. The two square states are the tagfetthe second target state has|
a self-loop, so the target can match a string of any lendtie)fdur circles to the left are the prefix, and
the one on the right is the postfix. For each state, only a feth@high-probability words are shown.

From ? (?).
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S
ﬂ%\
NP VP

025 |0.40
Article Noun Verb

|0.05 0.15 |0.10
Every wumpus smells

Figure 23.3 FILES: figures/parse-pcfg.eps (Tue Nov 3 16:2B5 2009). Parse tree for

the sentence “Every wumpus smells” according to the graméar
of the tree is labeled with its probability.

Each interior node

The probabilitgf the tree as a whole is
0.9 x 0.25 x 0.05 x 0.15 x 0.40 x 0.10 =0.0000675. Since this tree is the only parse of the sentenceg

that number is also the probability of the sentence. The d¢esealso be written in linear form as

[S [NP [Article every] [Noun wumpus]][ VP [Verb smelld]].
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Exp(3)

Number(3)

Digit(3)  Operator(+)

3 +

Exp(5)

— T

Exp(2)

Exp(2)

/\

Exp(4)

Number(4)

Digit(4) Operator(+)

4

Exp(2)

Number(2)

Digit(2)

2

)

Figure 23.9  FILES: figures/parse2.eps (Tue Nov 3 16:23:15 @0). Parse tree with semantic in-

terpretations for the string3*+ (4 + 2)”.
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S(Loves(John,Mary))

VP(\x Loves(x,Mary))

NP(JO/’U’!) NP(Mary)

Name(John) Verb(hy hx Loves(x,y)) Name(Mary)

John loves Mary

Figure 23.11  FILES: figures/john-mary-semantics.eps (Tudlov 3 16:23:05 2009)A parse tree
with semantic interpretations for the string “John lovesrivla
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Interlingua Semantics
Attraction(NamedJohn, NamedMary, High)

A

English Semantics | > French Semantics
Loves(John, Mary) Aime(Jean, Marie)
English Syntax [ > French Syntax
S(NP(John), VP(loves, NP(Mary))) S(NP(Jean), VP(aime, NP(Marie)))
English Words | - French Words
John loves Mary Jean aime Marie

Figure 23.12  FILES: figures/mt-interlingua.eps (Tue Nov 3 $:23:11 2009).The Vauquois trian-

gle: schematic diagram of the choices for a machine traoslaystem (?). We start with English text at
the top. An interlingua-based system follows the soliddingarsing English first into a syntactic form,
then into a semantic representation and an interlinguaseptation, and then through generation ta
a semantic, syntactic, and lexical form in French. A tranbfesed system uses the dashed lines as|a
shortcut. Different systems make the transfer at diffepaints; some make it at multiple points.
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€, e, e, e, €

{ There is a J [ smelly ] [ wumpus ) { sleeping ) { in 2 2]

A /s f Ja \ fs
(Ilyaun )( wumpus)[ malodorant ][qui dort) { a2?2 ]
d =0 d,=-2 d,=+1 d,=+1  d;=0

Figure 23.13  FILES: figures/mt-alignment3.eps (Wed Nov 4 123:52 2009).Candidate French
phrases for each phrase of an English sentence, with distdi) values for each French phrase.
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Analog acoustic signal

RN ASV YS!
V7 o\
Sampled, quantized

digital signal:

10 15 38 | 22 63 24 10 12 73 |

52 47 82 | L 89 94 11 |

Frames with features:

Figure 23.15  FILES: figures/sr-acoustic-frames.eps (Tue &V 3 16:23:46 2009)Translating the
acoustic signal into a sequence of frames. In this diagrash #ame is described by the discretized
values of three acoustic features; a real system would hezend of features.
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Phone HMM for [m]:
0.3 09 04

Output probabilities for the phone HMM:

Onset: Mid: End:

Ci:05 C5:02 Cy4: 0.1
Cr:02 Cy: 0.7 Ce: 0.5
C5:0.3 Cs5:0.1 C;:04

Figure 23.16  FILES: figures/sr-hmm.eps (Tue Nov 3 16:23:46(09). An HMM for the three-
state phone [m]. Each state has several possible outputs,véth its own probability. The MFCC
feature label€”; throughC'; are arbitrary, standing for some combination of featureesl
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(a) Word model with dialect variation:

Figure 23.17  FILES: figures/sr-tomato.eps (Tue Nov 3 16:236 2009).Two pronunciation mod-
els of the word “tomato.” Each model is shown as a transitiagim with states as circles and arrows
showing allowed transitions with their associated proli@éds. (a) A model allowing for dialect differ-
ences. The 0.5 numbers are estimates based on the two aptiebesred pronunciations. (b) A model
with a coarticulation effect on the first vowel, allowinghet the [ow] or the [ah] phone.
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= I My

Figure 24.1  FILES: figures/c24f001.eps (Tue Nov 3 16:22:3®MQ9). Imaging distorts geometry.

Parallel lines appear to meet in the distance, as in the iro&ee railway tracks on the left. In the

center, a small hand blocks out most of a large moon. On tte iSga foreshortening effect: the hand
is tilted away from the eye, making it appear shorter thamédenter figure.
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Image f—m"-7-7, T

plane : |
/X ..................... “
-------------- Jé_J m
i
»
Pinhole
</—>

Figure 24.2  FILES: figures/newpinhole.eps (Tue Nov 3 16:234 2009).Each light-sensitive el-
ement in the image plane at the back of a pinhole camera ecdight from a the small range of
directions that passes through the pinhole. If the pint®kmall enough, the result is a focused image
at the back of the pinhole. The process of projection meaatdaige, distant objects look the same ag
smaller, nearby objects. Note that the image is projectaitielown.
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Image plane
Light Source
Iris
Cornea . Fovga
Visual Axis —\_— Optic Nerve
Lens e ——
[ — Optical Axis —/
Lens
System Retina

Figure 24.3  FILES: figures/lens-eye.eps (Tue Nov 3 16:23:@009). Lenses collect the light

leaving a scene point in a range of directions, and steel fbalrrive at a single point on the image
plane. Focusing works for points lying close to a focal plamgpace; other points will not be focused
properly. In cameras, elements of the lens system move tagehthe focal plane, whereas in the eye,
the shape of the lens is changed by specialized muscles.
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Diffuse reflection, bright

Specularities

Diffuse reflection, dark  Cast shadow

Figure 24.4  FILES: figures/illumination.eps (Tue Nov 3 16:2:04 2009). A variety of illumina-
tion effects. There are specularities on the metal spooroarttie milk. The bright diffuse surface is
bright because it faces the light direction. The dark défearface is dark because it is tangential to the
illumination direction. The shadows appear at surfacefgdimt cannot see the light source. Photo by
Mike Linksvayer (mlinksva on flickr).
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A

B

Figure 24.5 FILES: figures/lambert.eps (Tue Nov 3 13:41:38@09). Two surface patches are
illuminated by a distant point source, whose rays are shangray arrowheads. Patch A is tilted away
from the sourced is close t090°) and collects less energy, because it cuts fewer light raysupit
surface area. Patch B, facing the soués(close ta0°), collects more energy.
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Y
N2 2 1

Figure 24.6  FILES: figures/diff-edges.eps (Tue Nov 3 16:227 2009).Different kinds of edges:
(1) depth discontinuities; (2) surface orientation digoauities; (3) reflectance discontinuities; (4) illu-
mination discontinuities (shadows).
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(@) (b)

Figure 24.7  FILES: figures/staplerl-test.eps (Tue Nov 3 183:47 2009) figures/staplerl.edge-
test.eps (Tue Nov 3 16:23:47 2009ja) Photograph of a stapler. (b) Edges computed from (a).
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0 10 20 30 40 50 60 70 80 90 100

Figure 24.8  FILES: figures/edgewderiv.eps (Tue Nov 3 16:221 2009). Top: Intensity profile
I(x) along a one-dimensional section across an edge=a50. Middle: The derivative of intensity,
I'(z). Large values of this function correspond to edges, but timetfon is noisy. Bottom: The
derivative of a smoothed version of the intensitl/x G.)’, which can be computed in one step as the
convolution! * G.. The noisy candidate edgemat= 75 has disappeared.
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(b)

Figure 249 FILES: figures/lightricegrad.eps (Wed Nov 4 189:20 2009) fig-
ures/darkricegrad.eps (Wed Nov 4 15:09:26 2009)wo images of the same texture of crumpled rice
paper, with different illumination levels. The gradientcter field (at every eighth pixel) is plotted on
top of each one. Notice that, as the light gets darker, alythdient vectors get shorter. The vectors da
not rotate, so the gradient orientations do not change.
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]

4
'’

i

Figure 24.10  FILES: figures/broxrevised.eps (Tue Nov 3 16229 2009) figures/broxinl.eps
(not found) figures/broxIn2.eps (not found) figures/broxFbw.eps (not found). Two frames of a
video sequence. On the right is the optical flow field corresiiag to the displacement from one frame
to the other. Note how the movement of the tennis racket amdr¢imt leg is captured by the directions

of the arrows. (Courtesy of Thomas Brox.)
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(b) (©) (d)

Figure 24.11  FILES: figures/101087.eps (Tue Nov 3 16:22:00@9) figures/101087-ucm-th0.eps
(not found) figures/101087-seg-th0.eps (not found) figurd91087-seg-th0-5.eps (not found)a)
Original image. (b) Boundary contours, where the higher Byevalue, the darker the contour. (c)
Segmentation into regions, corresponding to a fine pantibfthe image. Regions are rendered in their
mean colors. (d) Segmentation into regions, correspondiagcoarser partition of the image, resulting
in fewer regions. (Courtesy of Pablo Arbelaez, Michael Mattharles Fowlkes, and Jitendra Malik)
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Figure 24.12  FILES: figures/facesys.eps (not found) figuréacesys2.eps (Tue Nov 3 16:22:46
2009). Face finding systems vary, but most follow the architectilustrated in two parts here. On
the top, we go from images to responses, then apply non-memisuppression to find the strongest
local response. The responses are obtained by the protestsated on the bottom. We sweep a
window of fixed size over larger and smaller versions of thadge so as to find smaller or larger faces,
respectively. The illumination in the window is correctehd then a regression engine (quite often
a neural net) predicts the orientation of the face. The windocorrected to this orientation and then
presented to a classifier. Classifier outputs are then pmstpsed to ensure that only one face is placed
at each location in the image.
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Foreshortening Aspect

Occlusion Deformation

Figure 24.13  FILES: figures/c24f013.eps (Tue Nov 3 16:22:32009). Sources of appearance
variation. First, elements can foreshorten, like the dacpatch on the top left. This patch is viewed at
a slant, and so is elliptical in the image. Second, objeawed from different directions can change
shape quite dramatically, a phenomenon known as aspectheéop right are three different aspects
of a doughnut. Occlusion causes the handle of the mug on thenbéeft to disappear when the mug
is rotated. In this case, because the body and handle beddhg same mug, we have self-occlusion.
Finally, on the bottom right, some objects can deform drécaly.
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Orientation Positive Negative
histograms components components

Figure 24.14  FILES: figures/hogfig.eps (Tue Nov 3 16:23:03 20). Local orientation histograms

are a powerful feature for recognizing even quite complgrais. On the left, an image of a pedestrian.
On the center left, local orientation histograms for patch®e then apply a classifier such as a support
vector machine to find the weights for each histogram thatdmgsarate the positive examples of pedest
trians from non-pedestrians. We see that the positivelglted components look like the outline of a

person. The negative components are less clear; they esprai$the patterns that are not pedestrians|
Figure from ? (?)© IEEE.
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Figure 24.15  FILES: figures/lowefig.eps (Wed Nov 4 14:48:27009). Another example of object
recognition, this one using the SIFT feature (Scale Invargeature Transform), an earlier version of
the HOG feature. On thkeft, images of a shoe and a telephone that serve as object mddetse
center, a test image. On theght, the shoe and the telephone have been detected by: findints poi
in the image whose SIFT feature descriptions match a modehpating an estimate of pose of the
model; and verifying that estimate. A strong match is uguadirified with rare false positives. Images

from ? (?)© IEEE.
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Perceived object

Right image

Left image

Disparity

(a) (b)

Figure 24.16  FILES: figures/c24f017.eps (Tue Nov 3 16:22:34009) figures/stereo-1.eps (not
found) figures/stereo-2.eps (not found)Translating a camera parallel to the image plane causesimal
features to move in the camera plane. The disparity in positthat results is a cue to depth. If we
superimpose left and right image, as in (b), we see the digpar
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Figure 24.17  FILES: figures/stereopsis.eps (Tue Nov 3 16:2® 2009). The relation between
disparity and depth in stereopsis. The centers of projeafdhe two eyes aré apart, and the optical
axes intersect at the fixation poif. The pointP in the scene projects to pointy, and Pr in the two
eyes. In angular terms, the disparity between thesé.iSee text.
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Figure 24.18  FILES: figures/framel.eps (Tue Nov 3 16:22:52009) figures/frame60.eps (Tue
Nov 3 16:22:53 2009) figures/frame120.eps (Tue Nov 3 16:22:8009) figures/frame150.eps (Tue
Nov 3 16:22:53 2009) figures/features.eps (Tue Nov 3 16:22:2009).(a) Four frames from a video
sequence in which the camera is moved and rotated relatitreetobject. (b) The first frame of the
sequence, annotated with small boxes highlighting theifeatfound by the feature detector. (Courtesy

of Carlo Tomasi.)
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(@) (b)

Figure 24.19 FILES: figures/topview-dots.eps (Tue Nov 3 183:56 2009) figures/topview-
real.eps (Tue Nov 3 16:23:57 2009)(a) Three-dimensional reconstruction of the locationshef t
image features in Figure 24.18, shown from above. (b) Theh@mase, taken from the same position.
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(b)

Figure 24.20  FILES: figures/camp-test.eps (Tue Nov 3 16:222 2009) figures/chem-test.eps
(Tue Nov 3 16:22:32 2009).(a) A textured scene. Assuming that the real texture is umifallows

recovery of the surface orientation. The computed surfaiemtation is indicated by overlaying a black
circle and pointer, transformed as if the circle were pairde the surface at that point. (b) Recovery of
shape from texture for a curved surface (white circle andfeoithis time). Images courtesy of Jitendra
Malik and Ruth Rosenholtz (?).
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Figure 24.21  FILES: figures/isha.eps (Tue Nov 3 16:23:05 2000 An evocative line drawing.
(Courtesy of Isha Malik.)
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Image plane

Horizon

Figure 24.22  FILES: figures/c24f022-a.eps (Tue Nov 3 16:22t 2009). In an image of people
standing on a ground plane, the people whose feet are ctotte horizon in the image must be farther
away (top drawing). This means they must look smaller in thage (left lower drawing). This means
that the size and location of real pedestrians in an imagerdkppon one another and on the location
of the horizon. To exploit this, we need to identify the grduyslane, which is done using shape-from-
texture methods. From this information, and from some Vikgtdestrians, we can recover a horizon
as shown in the center image. On the right, acceptable pedebbxes given this geometric context.
Notice that pedestrians who are higher in the scene must biesnif they are not, then they are false
positives. Images from ? (%) IEEE.
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Figure 24.23  FILES: figures/armslegs.eps (Tue Nov 3 16:2242009).A pictorial structure model

evaluates a match between a set of image rectangles andomaatgerson (shown on the left) by scor-
ing the similarity in appearance between body segmentsraage segments and the spatial relations
between the image segments. Generally, a match is bettex ifrtage segments have about the righ
appearance and are in about the right place with respecetawother. The appearance model uses ay
erage colors for hair, head, torso, and upper and lower anthidegys. The relevant relations are shown
as arrows. On the right, the best match for a particular imag&ined using dynamic programming.

The match is a fair estimate of the configuration of the bodgyufe from ? (?)© IEEE.




298

Chapter

24.

Perception

Lateral walking
detector

Appearance
model

Body part
maps

motion qur
& mterlacmg

Detected figure

Figure 24.24

FILES: figures/tracker.eps (Tue Nov 3 16:23:52009).We can track moving people
with a pictorial structure model by first obtaining an apeme model, then applying it. To obtain the
appearance model, we scan the image to find a lateral walloeg.pThe detector does not need to
be very accurate, but should produce few false positivesmRhe detector response, we can read off
pixels that lie on each body segment, and others that doenotlithat segment. This makes it possible
to build a discriminative model of the appearance of eaclylpadt, and these are tied together into @
pictorial structure model of the person being tracked. Bmae can reliably track by detecting this
model in each frame. As the frames in the lower part of the Ensggest, this procedure can track
complicated, fast-changing body configurations, desptgablation of the video signal due to motion
blur. Figure from ? (?)© IEEE.
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Figure 24.25  FILES: figures/drinking-2.eps (Tue Nov 3 16:238 2009). Some complex human
actions produce consistent patterns of appearance andmdtor example, drinking involves move-
ments of the hand in front of the face. The first three imagescarrect detections of drinking; the
fourth is a false-positive (the cook is looking into the e&ffpot, but not drinking from it). Figure from

2 (?)© IEEE.
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Figure 24.26  FILES: figures/liberty-new.eps (Tue Nov 3 16:206 2009). The state of the art in

multiple-view reconstruction is now highly advanced. Tfiggre outlines a system built by Michael
Goesele and colleagues from the University of Washingtdh Darmstadt, and Microsoft Research.
From a collection of pictures of a monument taken by a largeroanity of users and posted on the
Internet (a), their system can determine the viewing dioast for those pictures, shown by the small

black pyramids in (b) and a comprehensive 3D reconstrugimwn in (c).
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Figure 24.27  FILES: figures/bottle-stereo.eps (Tue Nov 3 182:28 2009). Top view of a two-
camera vision system observing a bottle with a wall behind it
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(@) (b)

Figure 25.1 FILES: figures/nachi.eps (Wed Nov 4 15:11:08 20) figures/honda-asimo-
robot.eps (not found). (a) An industrial robotic manipulator for stacking bags opallet. Image
courtesy of Nachi Robotic Systems. (b) Honda’s P3 and Asimmanoid robots.
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(@) | (b)

Figure 25.2  FILES: figures/predator.eps (Wed Nov 4 15:12:28009) figures/Sojourner.eps
(Wed Nov 4 15:12:23 2009)(a) Predator, an unmanned aerial vehicle (UAV) used by tise Military.
Image courtesy of General Atomics Aeronautical SystemsN&SA’s Sojourner, a mobile robot that
explored the surface of Mars in July 1997.
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(a) (b)

Figure 25.3  FILES: figures/R317-SR4000-CW.eps (Wed Nov 4 1%:09 2009) figures/wall-
chair2.eps (Wed Nov 4 15:16:06 2009)a) Time of flight camera; image courtesy of Mesa Imaging
GmbH. (b) 3D range image obtained with this camera. The ramgge makes it possible to detect
obstacles and objects in a robot’s vicinity.
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Figure 25.4  FILES: figures/stanford-arm.eps (Tue Nov 3 16:2:46 2009) figures/car-like.eps
(Tue Nov 3 16:22:32 2009)(a) The Stanford Manipulator, an early robot arm with fivealete joints
(R) and one prismatic joint (P), for a total of six degreesrektlom. (b) Motion of a nonholonomic
four-wheeled vehicle with front-wheel steering.
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(b)

Figure 25.5  FILES: figures/RobotPluginSkin.eps (Wed Nov 4 4:50:50 2009) figures/raibert-
lleg.eps (Tue Nov 3 16:23:27 2009)a) Mobile manipulator plugging its charge cable into a wall
outlet. Image courtesy of Willow Garag@) 2009. (b) One of Marc Raibert’s legged robots in motion.
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(b)

Figure 25.6 FILES: figures/BDI-DKFl.eps (Tue Nov 3 16:22:142009). (a) Four-legged
dynamically-stable robot “Big Dog.” Image courtesy Bosynamics,© 2009. (b) 2009 RoboCup
Standard Platform League competition, showing the wint@an, B-Human, from the DFKI center
at the University of Bremen. Throughout the match, B-Humatscored their opponents 64:1. Their
success was built on probabilistic state estimation usarggbe filters and Kalman filters; on machine-
learning models for gait optimization; and on dynamic kickimoves. Image courtesy DFKE) 2009.
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Figure 25.7  FILES: figures/robotics-ddn.eps (Tue Nov 3 16233 2009). Robot perception can
be viewed as temporal inference from sequences of actiothsreasurements, as illustrated by this
dynamic Bayes network.
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(a) (b)

Figure 25.8  FILES: figures/robotics-pic2.eps (Tue Nov 3 1@3:34 2009) figures/range-scan-
model.eps (Tue Nov 3 16:23:27 2009)(a) A simplified kinematic model of a mobile robot. The
robot is shown as a circle with an interior line marking theafard direction. The state; consists of
the (z:, y+) position (shown implicitly) and the orientatigh. The new state.: is obtained by an
update in position of: A and in orientation ofo: A;. Also shown is a landmark &t;, y;) observed
at timet. (b) The range-scan sensor model. Two possible robot peeeshawn for a given range scan
(#1, 22, 23, z4). Itis much more likely that the pose on the left generated@nge scan than the pose
on the right.
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(a)

Robot position .

(b)

Robot position

()

Figure 25.10  FILES: figures/first.eps (Tue Nov 3 16:22:51 2®) figures/second.eps (Tue Nov
3 16:23:41 2009) figures/third.eps (Tue Nov 3 16:23:54 2009onte Carlo localization, a particle
filtering algorithm for mobile robot localization. (a) I, global uncertainty. (b) Approximately bi-
modal uncertainty after navigating in the (symmetric) mwor. (¢) Unimodal uncertainty after entering
a room and finding it to be distinctive.
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Figure 25.11  FILES: figures/robotics-pic3.eps (Tue Nov 3 183:34 2009) figures/robotics-

pic4.eps (Tue Nov 3 16:23:34 20090ne-dimensional illustration of a linearized motion modgl)
The functionf, and the projection of a mean, and a covariance interval (basedBp) into timet 1.
(b) The linearized version is the tangentfoét u,. The projection of the meagam, is correct. However,
the projected covariancE;; differs from ;1.
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landmark

Figure 25.12  FILES: figures/robotics-pic6.eps (Tue Nov 3 183:35 2009). Example of local-
ization using the extended Kalman filter. The robot moves atraight line. As it progresses, its
uncertainty increases gradually, as illustrated by theregllipses. When it observes a landmark with
known position, the uncertainty is reduced.
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\\\\\\.

(b) (c)

Figure 25.13  FILES: figures/visimgl.eps (Wed Nov 4 15:06:58009) figures/visimg2.eps (Wed
Nov 4 15:07:03 2009) figures/visimg3.eps (Wed Nov 4 15:07:2009). Sequence of “drivable sur-
face” classifier results using adaptive vision. In (a) otlg toad is classified as drivable (striped area)
The V-shaped dark line shows where the vehicle is headin@)the vehicle is commanded to drive off
the road, onto a grassy surface, and the classifier is begjriniclassify some of the grass as drivable,
In (c) the vehicle has updated its model of drivable surfaceotrespond to grass as well as road.
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Figure 25.14
ures/armPlainConfSpace.eps (Tue Nov 3 16:22:23 2009)(a) Workspace representation of a

robot arm with 2 DOFs. The workspace is a box with a flat obstaenging from the ceiling. (b)
Configuration space of the same robot. Only white regionkénspace are configurations that are freg
of collisions. The dot in this diagram corresponds to thefigumation of the robot shown on the left.

FILES: figures/armPlain.eps (Tue Nov 3 16:222 2009) fig-
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conf-3
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(@) (b)

Figure 25.15 FILES: figures/armExampleWorkSpace.eps (TueNov 3 16:22:22 2009) fig-
ures/armExampleConfSpace.eps (Tue Nov 3 16:22:22 2009Three robot configurations, shown
in workspace and configuration space.
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(b)

Figure 25.16  FILES: figures/armDPwithoutPotentialCoarseeps (Wed Nov 4 15:51:42 2009)
figures/armDPwithoutPotentialWorkspaceCoarse.eps (Tudlov 3 16:22:22 2009)(a) Value func-

tion and path found for a discrete grid cell approximatiomhaf configuration space. (b) The same path
visualized in workspace coordinates. Notice how the roleoids its elbow to avoid a collision with the

vertical obstacle.
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oal

(a) (b)

Figure 25.17 FILES: figures/armPotentialField.eps (Tue Ne 3 16:22:23 2009) fig-
ures/armDPwithPotential.eps (Tue Nov 3 16:22:21 2009)a) A repelling potential field pushes the
robot away from obstacles. (b) Path found by simultaneomnshymizing path length and the potential.
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(@) (b)

Figure 25.18 FILES: figures/armVoronoi.eps (Tue Nov 3 16:223 2009) fig-
ures/armRoadmap.eps (Tue Nov 3 16:22:23 2009)(a) The Voronoi graph is the set of points
equidistant to two or more obstacles in configuration spézeA probabilistic roadmap, composed of
400 randomly chosen points in free space.
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Figure 25.19

environment, velocity uncertainty cone, and envelope sbjile robot motions. The intended velocity
is v, but with uncertainty the actual velocity could be anywhieré€’,,, resulting in a final configuration
somewhere in the motion envelope, which means we wouldwiifiwe hit the hole or not.

FILES: figures/peg-in-hole.eps (Tue Nov 3 163217 2009). A two-dimensional
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Figure 25.20  FILES: figures/peg-in-hole-stepl.eps (Tue N 16:23:16 2009).The first motion
command and the resulting envelope of possible robot metiNie matter what the error, we know the
final configuration will be to the left of the hole.
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Figure 25.21  FILES: figures/peg-in-hole-step2.eps (Tue N 16:23:16 2009).The second mo-
tion command and the envelope of possible motions. Evenenittr, we will eventually get into the
hole.
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(@) (b) (c)

Figure 25.22 FILES: figures/armControlP1.0.eps (Tue Nov 3 @22:21 2009) fig-
ures/armControlP0.1.eps (Tue Nov 3 16:22:21 2009) figuresimControlP0.3D0.8.eps (Tue
Nov 3 16:22:21 2009). Robot arm control using (a) proportional control with gaactor 1.0, (b)
proportional control with gain factor 0.1, and (c) PD (praanal derivative) control with gain factors
0.3 for the proportional component and 0.8 for the diffel@ntomponent. In all cases the robot arm
tries to follow the path shown in gray.
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start goal
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(@) (b)

Figure 25.23 FILES: figures/armSimplePotentialAlt.eps (Tle Nov 3 16:22:23 2009) fig-

ures/armSimplePotential.eps (Tue Nov 3 16:22:23 2009potential field control. The robot ascends
a potential field composed of repelling forces asserted filrenobstacles and an attracting force that
corresponds to the goal configuration. (a) Successful gajh.ocal optimum.
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Figure 25.24  FILES: figures/genghis.eps (Tue Nov 3 13:34:42009) figures/robotics-pic5.eps
(Tue Nov 3 16:23:34 2009).(a) Genghis, a hexapod robot. (b) An augmented finite stathima
(AFSM) for the control of a single leg. Notice that this AFSkERacts to sensor feedback: if a leg is
stuck during the forward swinging phase, it will be lifteatirasingly higher.
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Figure 25.25  FILES: figures/flip-mosaic.eps (not found)Multiple exposures of an RC helicopter
executing a flip based on a policy learned with reinforcenheanning. Images courtesy of Andrew Ng,
Stanford University.
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Figure 25.26  FILES: figures/stanley-processes.eps (Wed Wd 11:17:26 2009) Software archi-
tecture of a robot car. This software implements a data ipein which all modules process data

simultaneously.
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@) (b)

Figure 25.27 FILES: figures/helpmate.eps (Tue Nov 3 15:26%4 2009) fig-
ures/DenvierStation.eps (Tue Nov 3 16:22:14 2009).(a) The Helpmate robot transports food
and other medical items in dozens of hospitals worldwide) Kiva robots are part of a material-
handling system for moving shelves in fulfillment centersage courtesy of Kiva Systems.




329

(b)

Figure 25.28 FILES: figures/racel2.eps (Wed Nov 4 15:18:14009) figures/munich-
ORsmall.eps (not found).(a) Robotic car Bss which won the DARPA Urban Challenge. Courtesy
of Carnegie Mellon University. (b) Surgical robots in theeogting room. Image courtesy of da Vinci
Surgical Systems.
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(b)

Figure 25.29  FILES: figures/mine-robot.eps (Tue Nov 3 16:231 2009) figures/mine-data.eps
(Tue Nov 3 16:23:09 2009)(a) A robot mapping an abandoned coal mine. (b) A 3D map of timem
acquired by the robot.
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(b)

Figure 25.30 FILES: figures/roombal.eps (Wed Nov 4 15:22:23009) figures/icra-cordless-
phone-gray3.eps (not found). (a) Roomba, the world’s best-selling mobile robot, vacuutosrs.
Image courtesy of iRobotf) 2009. (b) Robotic hand modeled after human hand. Image epudf
University of Washington and Carnegie Mellon University.
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Starting configuration <-0.5, 7> Ending configuration <-0.5, 7>
Figure 25.31  FILES: figures/figRobot2.eps (Tue Nov 3 16:22742009). A Robot manipulator in
two of its possible configurations.
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(@) (b) (c)

(d) (e) ®

Figure 25.32 FILES: figures/exerciseRobotl.eps (Tue Nov 3 622:42 2009) fig-
ures/exerciseRobot3.eps (Tue Nov 3 16:22:43 2009) figueedrciseRobot6.eps (Tue Nov 3
16:22:44 2009) figures/exerciseConf2.eps (Tue Nov 3 16:2P:2009) figures/exerciseConf4.eps
(Tue Nov 3 16:22:42 2009) figures/exerciseConf5.eps (Tue\N8 16:22:42 2009). Diagrams for

Exercise??.
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Figure 25.33  FILES: figures/robotics-pic7.eps (Tue Nov 3 183:35 2009).Simplified robot in a
maze. See Exercisz?.
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Figure 27.1  FILES: figures/utility-based-agent.eps (Tue Nv 3 16:23:59 2009) A model-based,

utility-based agent, as first presented in Figure 2.10.
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Figure 27.2  FILES: figures/compilation.eps (Tue Nov 3 16:234 2009). Compilation serves to
convert deliberative decision making into more efficieaflexive mechanisms.
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