
1 INTRODUCTION

1
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Figure 1.2 FILES: figures/neuron.eps (Tue Nov 3 16:23:13 2009). The parts of a nerve cell or
neuron. Each neuron consists of a cell body, or soma, that contains a cell nucleus. Branching out from
the cell body are a number of fibers called dendrites and a single long fiber called the axon. The axon
stretches out for a long distance, much longer than the scalein this diagram indicates. Typically, an
axon is 1 cm long (100 times the diameter of the cell body), butcan reach up to 1 meter. A neuron makes
connections with 10 to 100,000 other neurons at junctions called synapses. Signals are propagated from
neuron to neuron by a complicated electrochemical reaction. The signals control brain activity in the
short term and also enable long-term changes in the connectivity of neurons. These mechanisms are
thought to form the basis for learning in the brain. Most information processing goes on in the cerebral
cortex, the outer layer of the brain. The basic organizational unit appears to be a column of tissue about
0.5 mm in diameter, containing about 20,000 neurons and extending the full depth of the cortex about
4 mm in humans).
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Figure 1.4 FILES: figures/blocks-world.eps (Tue Nov 3 16:22:27 2009).A scene from the blocks
world. SHRDLU (?) has just completed the command “Find a block which is taller than the one you are
holding and put it in the box.”
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Figure 2.1 FILES: figures/agent-environment.eps (Tue Nov 316:22:19 2009).Agents interact
with environments through sensors and actuators.
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Figure 2.2 FILES: figures/vacuum2-environment.eps (Tue Nov 3 16:24:01 2009).A vacuum-
cleaner world with just two locations.
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Figure 2.9 FILES: figures/simple-reflex-agent.eps (Tue Nov3 16:23:44 2009).Schematic dia-
gram of a simple reflex agent.
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Figure 2.11 FILES: figures/model-based-reflex-agent.eps (Tue Nov 3 16:23:11 2009).A model-
based reflex agent.



9

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do now

State

How the world evolves

What my actions do

Actuators

What the world
is like now

What it will be like
  if I do action A

Goals

Figure 2.13 FILES: figures/goal-based-agent.eps (Tue Nov 316:22:54 2009).A model-based,
goal-based agent. It keeps track of the world state as well asa set of goals it is trying to achieve, and
chooses an action that will (eventually) lead to the achievement of its goals.
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Figure 2.14 FILES: figures/utility-based-agent.eps (Tue Nov 3 16:23:59 2009).A model-based,
utility-based agent. It uses a model of the world, along witha utility function that measures its prefer-
ences among states of the world. Then it chooses the action that leads to the best expected utility, where
expected utility is computed by averaging over all possibleoutcome states, weighted by the probability
of the outcome.
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Figure 2.15 FILES: figures/learning-agent.eps (Tue Nov 3 16:23:06 2009). A general learning
agent.
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Figure 2.16 FILES: figures/atomic-factored-structured.eps (Wed Nov 4 14:29:51 2009).Three
ways to represent states and the transitions between them. (a) Atomic representation: a state (such
as B or C) is a black box with no internal structure; (b) Factored representation: a state consists of
a vector of attribute values; values can be Boolean, real-valued, or one of a fixed set of symbols. (c)
Structured representation: a state includes objects, eachof which may have attributes of its own as well
as relationships to other objects.
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 316:23:37 2009).A simplified road
map of part of Romania.
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Figure 3.3 FILES: figures/vacuum2-state-space.eps (Tue Nov 3 16:24:01 2009).The state space
for the vacuum world. Links denote actions: L =Left, R = Right, S =Suck.
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Figure 3.4 FILES: figures/8puzzle.eps (Tue Nov 3 16:22:11 2009). A typical instance of the 8-
puzzle.
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Figure 3.5 FILES: figures/8queens.eps (Wed Nov 4 16:21:52 2009). Almost a solution to the
8-queens problem. (Solution is left as an exercise.)
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Figure 3.6 FILES: figures/search-map.eps (Tue Nov 3 16:23:38 2009). Partial search trees for
finding a route from Arad to Bucharest. Nodes that have been expanded are shaded; nodes that have
been generated but not yet expanded are outlined in bold; nodes that have not yet been generated are
shown in faint dashed lines.
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Figure 3.8 FILES: figures/romania-graph-search.eps (Tue Nov 3 13:48:17 2009).A sequence
of search trees generated by a graph search on the Romania problem of Figure 3.2. At each stage, we
have extended each path by one step. Notice that at the third stage, the northernmost city (Oradea) has
become a dead end: both of its successors are already explored via other paths.
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Figure 3.9 FILES: figures/graph-separation.eps (Tue Nov 3 13:36:17 2009). The separation
property of GRAPH-SEARCH, illustrated on a rectangular-grid problem. The frontier (white nodes)
always separates the explored region of the state space (black nodes) from the unexplored region (gray
nodes). In (a), just the root has been expanded. In (b), one leaf node has been expanded. In (c), the
remaining successors of the root have been expanded in clockwise order.
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Figure 3.10 FILES: figures/state-vs-node.eps (Tue Nov 3 13:50:06 2009). Nodes are the data
structures from which the search tree is constructed. Each has a parent, a state, and various bookkeeping
fields. Arrows point from child to parent.
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Figure 3.12 FILES: figures/bfs-progress.eps (Tue Nov 3 16:22:26 2009).Breadth-first search on
a simple binary tree. At each stage, the node to be expanded next is indicated by a marker.
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Figure 3.15 FILES: figures/romania-subgraph.eps (Tue Nov 313:48:07 2009).Part of the Ro-
mania state space, selected to illustrate uniform-cost search.
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Figure 3.16 FILES: figures/dfs-progress-noblack.eps (TueNov 3 13:30:55 2009).Depth-first
search on a binary tree. The unexplored region is shown in light gray. Explored nodes with no descen-
dants in the frontier are removed from memory. Nodes at depth3 have no successors andM is the only
goal node.
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Figure 3.19 FILES: figures/ids-progress.eps (Tue Nov 3 16:23:04 2009).Four iterations of itera-
tive deepening search on a binary tree.
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GoalStart

Figure 3.20 FILES: figures/bidirectional.eps (Tue Nov 3 16:22:27 2009).A schematic view of a
bidirectional search that is about to succeed when a branch from the start node meets a branch from the
goal node.
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Figure 3.22 FILES: figures/romania-sld.eps (Tue Nov 3 16:23:37 2009). Values of hSLD—
straight-line distances to Bucharest.
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Figure 3.23 FILES: figures/greedy-progress.eps (Tue Nov 3 16:22:55 2009).Stages in a greedy
best-first tree search for Bucharest with the straight-linedistance heuristichSLD . Nodes are labeled
with theirh-values.
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Figure 3.24 FILES: figures/astar-progress.eps (Tue Nov 3 16:22:24 2009).Stages in an A∗ search
for Bucharest. Nodes are labeled withf = g + h. The h values are the straight-line distances to
Bucharest taken from Figure 3.20.
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Figure 3.25 FILES: figures/f-circles.eps (Tue Nov 3 16:22:45 2009). Map of Romania showing
contours atf = 380, f = 400, andf = 420, with Arad as the start state. Nodes inside a given contour
havef -costs less than or equal to the contour value.
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Figure 3.27 FILES: figures/rbfs-progress.eps (Tue Nov 3 16:23:27 2009). Stages in an RBFS
search for the shortest route to Bucharest. Thef -limit value for each recursive call is shown on top
of each current node, and every node is labeled with itsf -cost. (a) The path via Rimnicu Vilcea is
followed until the current best leaf (Pitesti) has a value that is worse than the best alternative path
(Fagaras). (b) The recursion unwinds and the best leaf valueof the forgotten subtree (417) is backed
up to Rimnicu Vilcea; then Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion
unwinds and the best leaf value of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu
Vilcea is expanded. This time, because the best alternativepath (through Timisoara) costs at least 447,
the expansion continues to Bucharest.
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Figure 3.28 FILES: figures/8puzzle.eps (Tue Nov 3 16:22:11 2009). A typical instance of the
8-puzzle. The solution is 26 steps long.
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Figure 3.30 FILES: figures/8puzzle-pattern.eps (Tue Nov 3 16:22:11 2009).A subproblem of the
8-puzzle instance given in Figure 3.26. The task is to get tiles 1, 2, 3, and 4 into their correct positions,
without worrying about what happens to the other tiles.
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Figure 3.31 FILES: figures/geometric-scene.eps (Tue Nov 3 16:22:54 2009).A scene with polyg-
onal obstacles.S andG are the start and goal states.
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Figure 3.32 FILES: figures/brio.eps (Wed Nov 4 14:35:23 2009). The track pieces in a wooden
railway set; each is labeled with the number of copies in the set. Note that curved pieces and “fork”
pieces (“switches” or “points”) can be flipped over so they can curve in either direction. Each curve
subtends 45 degrees.
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Figure 4.1 FILES: figures/hill-climbing.eps (Tue Nov 3 16:23:03 2009).A one-dimensional state-
space landscape in which elevation corresponds to the objective function. The aim is to find the global
maximum. Hill-climbing search modifies the current state totry to improve it, as shown by the arrow.
The various topographic features are defined in the text.
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Figure 4.3 FILES: figures/8queens-successors.eps (Wed Nov4 16:23:55 2009) figures/8queens-
local-minimum.eps (Wed Nov 4 16:14:15 2009).(a) An 8-queens state with heuristic cost estimate
h =17, showing the value ofh for each possible successor obtained by moving a queen within its
column. The best moves are marked. (b) A local minimum in the 8-queens state space; the state has
h =1 but every successor has a higher cost.
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Figure 4.4 FILES: figures/ridge.eps (Tue Nov 3 16:23:29 2009). Illustration of why ridges cause
difficulties for hill climbing. The grid of states (dark circles) is superimposed on a ridge rising from left
to right, creating a sequence of local maxima that are not directly connected to each other. From each
local maximum, all the available actions point downhill.
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Figure 4.6 FILES: figures/genetic.eps (Tue Nov 3 16:22:53 2009). The genetic algorithm, illus-
trated for digit strings representing 8-queens states. Theinitial population in (a) is ranked by the fitness
function in (b), resulting in pairs for mating in (c). They produce offspring in (d), which are subject to
mutation in (e).
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Figure 4.7 FILES: figures/8queens-crossover.eps (Wed Nov 416:11:32 2009). The 8-queens
states corresponding to the first two parents in Figure 4.6(c) and the first offspring in Figure 4.6(d). The
shaded columns are lost in the crossover step and the unshaded columns are retained.
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Figure 4.9 FILES: figures/vacuum2-states.eps (Tue Nov 3 16:24:02 2009). The eight possible
states of the vacuum world; states 7 and 8 are goal states.
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Figure 4.10 FILES: figures/erratic-vacuum-and-or-plan.eps (Tue Nov 3 13:32:58 2009).The
first two levels of the search tree for the erratic vacuum world. State nodes areOR nodes where some
action must be chosen. At theAND nodes, shown as circles, every outcome must be handled, as indi-
cated by the arc linking the outgoing branches. The solutionfound is shown in bold lines.
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Figure 4.12 FILES: figures/slippery-vacuum-loop-plan.eps (Tue Nov 3 13:48:56 2009).Part of
the search graph for the slippery vacuum world, where we haveshown (some) cycles explicitly. All
solutions for this problem are cyclic plans because there isno way to move reliably.
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Figure 4.13 FILES: figures/vacuum-prediction.eps (Tue Nov3 13:51:56 2009).(a) Predicting
the next belief state for the sensorless vacuum world with a deterministic action,Right . (b) Prediction
for the same belief state and action in the slippery version of the sensorless vacuum world.
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Figure 4.14 FILES: figures/vacuum2-sets.eps (Tue Nov 3 16:24:01 2009).The reachable portion
of the belief-state space for the deterministic, sensorless vacuum world. Each shaded box corresponds
to a single belief state. At any given point, the agent is in a particular belief state but does not know
which physical state it is in. The initial belief state (complete ignorance) is the top center box. Actions
are represented by labeled links. Self-loops are omitted for clarity.
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Figure 4.15 FILES: figures/vacuum-prediction-update.eps(Tue Nov 3 13:52:01 2009).Two
example of transitions in local-sensing vacuum worlds. (a)In the deterministic world,Right is applied
in the initial belief state, resulting in a new belief state with two possible physical states; for those
states, the possible percepts are[B,Dirty ] and[B, Clean], leading to two belief states, each of which
is a singleton. (b) In the slippery world,Right is applied in the initial belief state, giving a new belief
state with four physical states; for those states, the possible percepts are[A,Dirty ], [B,Dirty ], and
[B,Clean], leading to three belief states as shown.
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Figure 4.16 FILES: figures/local-sensing-vacuum-and-or.eps (Tue Nov 3 13:42:56 2009).The
first level of theAND–OR search tree for a problem in the local-sensing vacuum world;Suck is the first
step of the solution.
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Figure 4.17 FILES: figures/kindergarten-vacuum-filtering.eps (Tue Nov 3 13:41:48 2009).Two
prediction–update cycles of belief-state maintenance in the kindergarten vacuum world with local sens-
ing.
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(a) Possible locations of robot after E1 = NSW

(b) Possible locations of robot After E1 = NSW, E2 = NS

Figure 4.18 FILES: figures/localization-figures-a.eps (Tue Nov 3 16:23:06 2009).Possible po-
sitions of the robot,⊙, (a) after one observationE1 = NSW and (b) after a second observation
E2 =NS. When sensors are noiseless and the transition model is accurate, there are no other pos-
sible locations for the robot consistent with this sequenceof two observations.
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Figure 4.19 FILES: figures/maze-3x3.eps (Tue Nov 3 16:23:082009). A simple maze problem.
The agent starts atS and must reachG but knows nothing of the environment.
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Figure 4.20 FILES: figures/adversary-spaces.eps (Tue Nov 316:22:18 2009) figures/adversary-
blocks.eps (Sun Oct 25 01:08:26 2009).(a) Two state spaces that might lead an online search agent
into a dead end. Any given agent will fail in at least one of these spaces. (b) A two-dimensional
environment that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks thatroute with another long, thin wall, so that
the path followed is much longer than the best possible path.
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Figure 4.22 FILES: figures/quicksand.eps (Tue Nov 3 13:45:58 2009).An environment in which
a random walk will take exponentially many steps to find the goal.
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Figure 4.23 FILES: figures/lrta-progress.eps (Tue Nov 3 16:23:08 2009). Five iterations of
LRTA∗ on a one-dimensional state space. Each state is labeled withH(s), the current cost estimate
to reach a goal, and each link is labeled with its step cost. The shaded state marks the location of the
agent, and the updated cost estimates at each iteration are circled.
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Figure 5.1 FILES: figures/tictactoe.eps (Tue Nov 3 16:23:552009).A (partial) game tree for the
game of tic-tac-toe. The top node is the initial state, andMAX moves first, placing anX in an empty
square. We show part of the tree, giving alternating moves byMIN (O) andMAX (X), until we eventually
reach terminal states, which can be assigned utilities according to the rules of the game.
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MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3

a1
a2

a3

b1

b2

b3 c1

c2

c3 d1

d2

d3

MIN

Figure 5.2 FILES: figures/minimax.eps (Tue Nov 3 16:23:11 2009). A two-ply game tree. The
△ nodes are “MAX nodes,” in which it isMAX ’s turn to move, and the▽ nodes are “MIN nodes.” The
terminal nodes show the utility values forMAX ; the other nodes are labeled with their minimax values.
MAX ’s best move at the root isa1, because it leads to the state with the highest minimax value, and
MIN ’s best reply isb1, because it leads to the state with the lowest minimax value.
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to move
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A

(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,1) (5,1,1) (1, 5, 2) (7, 7,1) (5, 4, 5)

(1, 2, 6) (6, 1, 2) (1, 5, 2) (5, 4, 5)

(1, 2, 6) (1, 5, 2)

(1, 2, 6)

X

Figure 5.4 FILES: figures/minimax3.eps (Tue Nov 3 16:23:11 2009). The first three plies of a
game tree with three players (A, B, C). Each node is labeled with values from the viewpoint of each
player. The best move is marked at the root.
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[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

Figure 5.5 FILES: figures/alpha-beta-progress.eps (Tue Nov 3 16:22:20 2009).Stages in the
calculation of the optimal decision for the game tree in Figure 5.2. At each point, we show the range
of possible values for each node. (a) The first leaf belowB has the value 3. Hence,B, which is aMIN

node, has a value ofat most 3. (b) The second leaf belowB has a value of 12;MIN would avoid this
move, so the value ofB is still at most 3. (c) The third leaf belowB has a value of 8; we have seen
all B’s successor states, so the value ofB is exactly 3. Now, we can infer that the value of the root is
at least 3, becauseMAX has a choice worth 3 at the root. (d) The first leaf belowC has the value 2.
Hence,C, which is aMIN node, has a value ofat most 2. But we know thatB is worth 3, soMAX

would never chooseC. Therefore, there is no point in looking at the other successor states ofC. This
is an example of alpha–beta pruning. (e) The first leaf belowD has the value 14, soD is worthat most
14. This is still higher thanMAX ’s best alternative (i.e., 3), so we need to keep exploringD’s successor
states. Notice also that we now have bounds on all of the successors of the root, so the root’s value is
also at most 14. (f) The second successor ofD is worth 5, so again we need to keep exploring. The
third successor is worth 2, so nowD is worth exactly 2.MAX ’s decision at the root is to move toB,
giving a value of 3.
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Figure 5.6 FILES: figures/alpha-beta-general.eps (Tue Nov3 16:22:20 2009).The general case
for alpha–beta pruning. Ifm is better thann for Player, we will never get ton in play.
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(b) White to move(a) White to move

Figure 5.8 FILES: figures/chess-evaluation3.eps (Tue Nov 316:22:33 2009).Two chess positions
that differ only in the position of the rook at lower right. In(a), Black has an advantage of a knight and
two pawns, which should be enough to win the game. In (b), White will capture the queen, giving it an
advantage that should be strong enough to win.



62 Chapter 5. Adversarial Search

a     b    c    d    e     f     g    h

1 

2 

3 

4 

5 

6 

7 

8

Figure 5.9 FILES: figures/horizon.eps (Tue Nov 3 16:23:03 2009). The horizon effect. With
Black to move, the black bishop is surely doomed. But Black can forestall that event by checking the
white king with its pawns, forcing the king to capture the pawns. This pushes the inevitable loss of the
bishop over the horizon, and thus the pawn sacrifices are seenby the search algorithm as good moves
rather than bad ones.



63
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24 23 22 21 20 19 18 17 16 15 14 13

0

25

Figure 5.10 FILES: figures/backgammon-position.eps (Tue Nov 3 16:22:26 2009).A typical
backgammon position. The goal of the game is to move all one’spieces off the board. White moves
clockwise toward 25, and Black moves counterclockwise toward 0. A piece can move to any position
unless multiple opponent pieces are there; if there is one opponent, it is captured and must start over. In
the position shown, White has rolled 6–5 and must choose among four legal moves: (5–10,5–11), (5–
11,19–24), (5–10,10–16), and (5–11,11–16), where the notation (5–11,11–16) means move one piece
from position 5 to 11, and then move a piece from 11 to 16.
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Figure 5.11 FILES: figures/backgammon-tree.eps (Tue Nov 3 16:22:26 2009).Schematic game
tree for a backgammon position.



65

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9
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Figure 5.12 FILES: figures/chance-evaluation.eps (Tue Nov3 16:22:32 2009). An order-
preserving transformation on leaf values changes the best move.
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Figure 5.13 FILES: figures/kriegspiel-krk.eps (Tue Nov 3 13:41:43 2009).Part of a guaranteed
checkmate in the KRK endgame, shown on a reduced board. In theinitial belief state, Black’s king is
in one of three possible locations. By a combination of probing moves, the strategy narrows this down
to one. Completion of the checkmate is left as an exercise.
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Figure 5.14 FILES: figures/minimax-error.eps (Tue Nov 3 16:23:11 2009).A two-ply game tree
for which heuristic minimax may make an error.
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Figure 5.15 FILES: figures/pursuit-evasion-game.eps (TueNov 3 13:46:04 2009).(a) A map
where the cost of every edge is 1. Initially the pursuerP is at nodeb and the evaderE is at noded. (b)
A partial game tree for this map. Each node is labeled with theP, E positions.P moves first. Branches
marked “?” have yet to be explored.
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A B

1 432

Figure 5.16 FILES: figures/line-game4.eps (Tue Nov 3 16:23:06 2009).The starting position of
a simple game. PlayerA moves first. The two players take turns moving, and each player must move
his token to an open adjacent space in either direction. If the opponent occupies an adjacent space, then
a player may jump over the opponent to the next open space if any. (For example, ifA is on 3 andB
is on 2, thenA may move back to 1.) The game ends when one player reaches the opposite end of the
board. If playerA reaches space 4 first, then the value of the game toA is +1; if player B reaches
space 1 first, then the value of the game toA is −1.
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n1

n2

nj

Figure 5.17 FILES: figures/alpha-beta-proof.eps (Tue Nov 316:22:21 2009). Situation when
considering whether to prune nodenj .
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2 2 1 2 0 2 -1 0

Figure 5.18 FILES: figures/pruning.eps (Tue Nov 3 16:23:22 2009). The complete game tree for
a trivial game with chance nodes.



72 Chapter 5. Adversarial Search

(a) (b)

Figure 5.19 FILES: figures/NewellSimonMcCarthy.eps (Tue Nov 3 16:22:16 2009).Pioneers in
computer chess: (a) Herbert Simon and Allen Newell, developers of the NSS program (1958); (b) John
McCarthy and the Kotok–McCarthy program on an IBM 7090 (1967).
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Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:262009) figures/australia-csp.eps
(Tue Nov 3 16:22:25 2009).(a) The principal states and territories of Australia. Coloring this map
can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region
so that no neighboring regions have the same color. (b) The map-coloring problem represented as a
constraint graph.
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Figure 6.2 FILES: figures/cryptarithmetic.eps (Tue Nov 3 13:31:28 2009).(a) A cryptarithmetic
problem. Each letter stands for a distinct digit; the aim is to find a substitution of digits for letters such
that the resulting sum is arithmetically correct, with the added restriction that no leading zeroes are
allowed. (b) The constraint hypergraph for the cryptarithmetic problem, showing theAlldiff constraint
(square box at the top) as well as the column addition constraints (four square boxes in the middle).
The variablesC1, C2, andC3 represent the carry digits for the three columns.
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Figure 6.4 FILES: figures/sudoku.eps (Tue Nov 3 13:49:46 2009). (a) A Sudoku puzzle and (b)
its solution.
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NT=blue
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NT=green

WA=red
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Q=red

WA=red
NT=green
Q=blue

Figure 6.6 FILES: figures/australia-search.eps (Tue Nov 3 16:22:25 2009). Part of the search
tree for the map-coloring problem in Figure 6.1.
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Figure 6.7 FILES: figures/australia-fc.eps (Tue Nov 3 16:22:25 2009). The progress of a map-
coloring search with forward checking.WA= red is assigned first; then forward checking deletesred

from the domains of the neighboring variablesNT andSA. After Q = green is assigned,green is
deleted from the domains ofNT , SA, andNSW . After V = blue is assigned,blue is deleted from the
domains ofNSW andSA, leavingSA with no legal values.
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Figure 6.9 FILES: figures/8queens-min-conflicts.eps (Wed Nov 4 16:20:15 2009).A two-step
solution using min-conflicts for an 8-queens problem. At each stage, a queen is chosen for reassignment
in its column. The number of conflicts (in this case, the number of attacking queens) is shown in each
square. The algorithm moves the queen to the min-conflicts square, breaking ties randomly.
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Figure 6.10 FILES: figures/tree-csp.eps (Tue Nov 3 16:23:582009). (a) The constraint graph of
a tree-structured CSP. (b) A linear ordering of the variables consistent with the tree withA as the root.
This is known as atopological sort of the variables.
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Figure 6.12 FILES: figures/australia-csp.eps (Tue Nov 3 16:22:25 2009) figures/australia-
tree.eps (Tue Nov 3 16:22:26 2009).(a) The original constraint graph from Figure 6.1. (b) The
constraint graph after the removal ofSA.
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Figure 6.13 FILES: figures/australia-decomposition.eps (Tue Nov 3 16:22:25 2009).A tree de-
composition of the constraint graph in Figure 6.12(a).
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Figure 7.2 FILES: figures/wumpus-world.eps (Tue Nov 3 16:24:13 2009). A typical wumpus
world. The agent is in the bottom left corner, facing right.
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Figure 7.3 FILES: figures/wumpus-seq01.eps (Tue Nov 3 16:24:10 2009). The
first step taken by the agent in the wumpus world. (a) The initial situation, af-
ter percept [None ,None,None, None,None]. (b) After one move, with percept
[None,Breeze ,None,None ,None].
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Figure 7.4 FILES: figures/wumpus-seq35.eps (Tue Nov 3 16:24:11 2009).Two later stages in the
progress of the agent. (a) After the third move, with percept[Stench ,None, None,None,None ]. (b)
After the fifth move, with percept[Stench ,Breeze ,Glitter ,None, None].
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Figure 7.5 FILES: figures/wumpus-entailment.eps (Tue Nov 316:24:09 2009) figures/wumpus-
nonentailment.eps (Tue Nov 3 16:24:10 2009).Possible models for the presence of pits in squares
[1,2], [2,2], and [3,1]. The KB corresponding to the observations of nothing in [1,1] and a breeze in
[2,1] is shown by the solid line. (a) Dotted line shows modelsof α1 (no pit in [1,2]). (b) Dotted line
shows models ofα2 (no pit in [2,2]).
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Figure 7.6 FILES: figures/follows+entails.eps (Tue Nov 3 16:22:52 2009).Sentences are physical
configurations of the agent, and reasoning is a process of constructing new physical configurations from
old ones. Logical reasoning should ensure that the new configurations represent aspects of the world
that actually follow from the aspects that the old configurations represent.
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Figure 7.13 FILES: figures/wumpus-resolution.eps (Tue Nov3 16:24:10 2009).Partial applica-
tion of PL-RESOLUTION to a simple inference in the wumpus world.¬P1,2 is shown to follow from
the first four clauses in the top row.
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Figure 7.16 FILES: figures/pl-horn-example.eps (Tue Nov 3 13:45:07 2009).(a) A set of Horn
clauses. (b) The correspondingAND–OR graph.
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Figure 7.19 FILES: . (a) Graph showing the probability that a random 3-CNF sentence withn = 50
symbols is satisfiable, as a function of the clause/symbol ratio m/n. (b) Graph of the median run time
(measured in number of recursive calls to DPLL, a good proxy)on random 3-CNF sentences. The most
difficult problems have a clause/symbol ratio of about 4.3.
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Figure 7.21 FILES: figures/wiggly-belief-state.eps (Tue Nov 3 13:53:12 2009).Depiction of a
1-CNF belief state (bold outline) as a simply representable, conservative approximation to the exact
(wiggly) belief state (shaded region with dashed outline).Each possible world is shown as a circle; the
shaded ones are consistent with all the percepts.
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Figure 8.2 FILES: figures/fol-model.eps (Tue Nov 3 16:22:522009). A model containing five
objects, two binary relations, three unary relations (indicated by labels on the objects), and one unary
function, left-leg.
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Figure 8.4 FILES: figures/all-models-standard.eps (Tue Nov 3 13:21:28 2009).Some members
of the set of all models for a language with two constant symbols, R andJ , and one binary relation
symbol. The interpretation of each constant symbol is shownby a gray arrow. Within each model, the
related objects are connected by arrows.
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Figure 8.5 FILES: figures/all-models-database.eps (Tue Nov 3 13:21:39 2009).Some members
of the set of all models for a language with two constant symbols, R andJ , and one binary relation
symbol, under database semantics. The interpretation of the constant symbols is fixed, and there is a
distinct object for each constant symbol.
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Figure 8.6 FILES: figures/adder.eps (Tue Nov 3 16:22:18 2009). A digital circuit C1, purporting
to be a one-bit full adder. The first two inputs are the two bitsto be added, and the third input is a
carry bit. The first output is the sum, and the second output isa carry bit for the next adder. The circuit
contains two XOR gates, two AND gates, and one OR gate.
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Beatrice

Andrew

EugenieWilliam Harry

CharlesDiana

MumGeorge

PhilipElizabeth MargaretKyddSpencer

Peter

Mark

Zara

Anne Sarah Edward Sophie

Louise James

Figure 8.7 FILES: figures/family1.eps (Tue Nov 3 16:22:46 2009). A typical family tree. The
symbol “⊲⊳” connects spouses and arrows point to children.
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Z1

Z2

Z3
Z4

X0
Y0

X1
Y1

X2
Y2

X3
Y3

Ad0

Ad1

Ad2

Ad3

X0X1X2X3

Z0Z1Z2Z3Z4

Y0Y1Y2Y3+

Figure 8.8 FILES: figures/4bit-adder.eps (Tue Nov 3 16:22:10 2009).A four-bit adder. EachAd i

is a one-bit adder, as in Figure 8.5 on page 97.
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Employs(x,y)

Employs(x,Richard) Employs(IBM,y)

Employs(IBM,Richard)

Employs(x,y)

Employs(John,John)

Employs(x,x)Employs(x,John) Employs(John,y)

(a) (b)

Figure 9.2 FILES: figures/subsumption-lattices.eps (Tue Nov 3 16:23:50 2009).(a) The sub-
sumption lattice whose lowest node isEmploys(IBM ,Richard). (b) The subsumption lattice for the
sentenceEmploys(John , John).
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Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

Figure 9.4 FILES: figures/crime-fc.eps (Tue Nov 3 16:22:35 2009). The proof tree generated by
forward chaining on the crime example. The initial facts appear at the bottom level, facts inferred on
the first iteration in the middle level, and facts inferred onthe second iteration at the top level.
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WA

NT

SA

Q

NSW

V

T

Diff (wa,nt) ∧ Diff (wa, sa) ∧

Diff (nt , q) ∧ Diff (nt , sa) ∧

Diff (q,nsw) ∧ Diff (q, sa) ∧

Diff (nsw , v) ∧ Diff (nsw , sa) ∧

Diff (v, sa) ⇒ Colorable()

Diff (Red ,Blue) Diff (Red ,Green)

Diff (Green ,Red) Diff (Green,Blue)

Diff (Blue,Red) Diff (Blue,Green)

(a) (b)

Figure 9.5 FILES: figures/australia-csp.eps (Tue Nov 3 16:22:25 2009).(a) Constraint graph for
coloring the map of Australia. (b) The map-coloring CSP expressed as a single definite clause. Each
map region is represented as a variable whose value can be oneof the constantsRed , Green or Blue.
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Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{y/M1} { }{ }{ }

 {z/Nono}{ }

Figure 9.7 FILES: figures/crime-bc.eps (Tue Nov 3 16:22:34 2009). Proof tree constructed by
backward chaining to prove that West is a criminal. The tree should be read depth first, left to right.
To proveCriminal(West), we have to prove the four conjuncts below it. Some of these are in the
knowledge base, and others require further backward chaining. Bindings for each successful unification
are shown next to the corresponding subgoal. Note that once one subgoal in a conjunction succeeds,
its substitution is applied to subsequent subgoals. Thus, by the time FOL-BC-ASK gets to the last
conjunct, originallyHostile(z), z is already bound toNono.
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(a) (b)

A B C

A1

J4

Figure 9.9 FILES: figures/prolog-ribbon.eps (Tue Nov 3 16:23:22 2009).(a) Finding a path from
A to C can lead Prolog into an infinite loop. (b) A graph in which eachnode is connected to two
random successors in the next layer. Finding a path fromA1 to J4 requires 877 inferences.
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path(a,c)

fail

{ }/Y b

{ }

link(a,c) path(a,Y)

link(a,Y)

link(b,c)

path(a,c)

path(a,Y) link(Y,c)

path(a,Y’) link(Y’,Y)

(a) (b)

Figure 9.10 FILES: figures/proof-abc1.eps (Tue Nov 3 16:23:22 2009) figures/proof-abc2.eps
(Tue Nov 3 16:23:22 2009).(a) Proof that a path exists fromA to C. (b) Infinite proof tree generated
when the clauses are in the “wrong” order.
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¬American(x)     ¬Weapon(y)     ¬Sells(x,y,z)    ¬Hostile(z)    Criminal(x) ¬Criminal(West)

¬Enemy(Nono, America)Enemy(Nono,America)

¬Missile(x)    Weapon(x) ¬Weapon(y)    ¬Sells(West,y,z)    ¬Hostile(z)

Missile(M1) ¬Missile(y)    ¬Sells(West,y,z)    ¬Hostile(z)

¬Missile(x)    ¬Owns(Nono,x)     Sells(West,x,Nono) ¬Sells(West,M1,z)    ¬Hostile(z)

¬American(West)    ¬Weapon(y)    ¬Sells(West,y,z)    ¬Hostile(z)American(West)

¬Missile(M1)    ¬Owns(Nono,M1)    ¬Hostile(Nono)Missile(M1)

¬Owns(Nono,M1)    ¬Hostile(Nono)Owns(Nono,M1)

¬Enemy(x,America)    Hostile(x) ¬Hostile(Nono)

^^^ ^

^ ^ ^

^ ^ ^

^ ^

^ ^ ^

^ ^

^

^

Figure 9.11 FILES: figures/crime-resolution.eps (Tue Nov 316:22:35 2009).A resolution proof
that West is a criminal. At each step, the literals that unifyare in bold.
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¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)Kills(Jack, Tuna)    Kills(Curiosity, Tuna)¬Cat(x)    Animal(x)Cat(Tuna)

¬Animal(F(Jack))    Loves(G(Jack), Jack) Animal(F(x))    Loves(G(x), x) ¬Loves(y, x)    ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x)    ¬Animal(z)    ¬Kills(x, z)Animal(Tuna) ¬Loves(x,F(x))    Loves(G(x), x) ¬Animal(x)    Loves(Jack, x)

^^

^ ^ ^ ^

^^^

Figure 9.12 FILES: figures/curiosity.eps (Tue Nov 3 16:22:36 2009).A resolution proof that Cu-
riosity killed the cat. Notice the use of factoring in the derivation of the clauseLoves(G(Jack), Jack).
Notice also in the upper right, the unification ofLoves(x, F (x)) andLoves(Jack, x) can only succeed
after the variables have been standardized apart.
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Resolution can find a contradiction in S'

There is a resolution proof for the contradiction in S'

Herbrand’s theorem

Some set S' of ground instances is unsatisfiable

Any set of sentences S is representable in clausal form

Assume S is unsatisfiable, and in clausal form

Lifting lemma

Ground resolution

theorem

Figure 9.13 FILES: figures/resolution-completeness.eps (Tue Nov 3 16:23:28 2009).Structure
of a completeness proof for resolution.
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Start State Goal State

B A

C

A

B

C

Figure 10.4 FILES: figures/sussman-anomaly.eps (Tue Nov 3 16:23:50 2009). Diagram of the
blocks-world problem in Figure??.



112 Chapter 10. Classical Planning

(a)

(b)

At(P1, A)
Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

At(P1, B)

At(P2, B)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

Figure 10.5 FILES: figures/two-plan-searches.eps (Tue Nov3 16:23:58 2009).Two approaches
to searching for a plan. (a) Forward (progression) search through the space of states, starting in the
initial state and using the problem’s actions to search forward for a member of the set of goal states. (b)
Backward (regression) search through sets of relevant states, starting at the set of states representing
the goal and using the inverse of the actions to search backward for the initial state.
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Figure 10.6 FILES: figures/ignore-del.eps (Tue Nov 3 16:23:04 2009). Two state spaces from
planning problems with the ignore-delete-lists heuristic. The height above the bottom plane is the
heuristic score of a state; states on the bottom plane are goals. There are no local minima, so search for
the goal is straightforward. From ? (?).
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Bake(Cake)

Eat(Cake)

Have(Cake)

S0 A0 S1 A1 S2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

¬

¬ ¬

¬

¬

Figure 10.8 FILES: figures/eatcake-graphplan2.eps (Tue Nov 3 16:22:41 2009).The planning
graph for the “have cake and eat cake too” problem up to levelS2. Rectangles indicate actions (small
squares indicate persistence actions), and straight linesindicate preconditions and effects. Mutex links
are shown as curved gray lines. Not all mutex links are shown,because the graph would be too cluttered.
In general, if two literals are mutex atSi, then the persistence actions for those literals will be mutex at
Ai and we need not draw that mutex link.
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S0 A1 S2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

A0 S1

Figure 10.10 FILES: figures/tire-graphplan2.eps (Tue Nov 316:23:55 2009). The planning
graph for the spare tire problem after expansion to levelS2. Mutex links are shown as gray lines.
Not all links are shown, because the graph would be too cluttered if we showed them all. The solution
is indicated by bold lines and outlines.
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PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0

Forward

Result(S0, Forward)

Result(Result(S0, Forward),

              Turn(Right))

Turn(Right)

Figure 10.12 FILES: figures/situations.eps (Tue Nov 3 16:23:45 2009).Situations as the results
of actions in the wumpus world.
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FinishAt(Spare,Axle)Start
At(Flat,Axle)

At(Spare,Trunk)

(a)

Remove(Spare,Trunk)At(Spare,Trunk)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)Start

At(Flat,Axle)

At(Spare,Trunk)

¬

(b)

Start

Remove(Spare,Trunk)At(Spare,Trunk)

Remove(Flat,Axle)At(Flat,Axle)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)

At(Flat,Axle)

At(Spare,Trunk)

¬

(c)

Figure 10.13 FILES: figures/tire-empty.eps (Wed Nov 4 14:41:01 2009) figures/tire0.eps (Wed
Nov 4 14:40:52 2009) figures/tire2.eps (Wed Nov 4 14:40:38 2009). (a) the tire problem expressed as
an empty plan. (b) an incomplete partially ordered plan for the tire problem. Boxes represent actions
and arrows indicate that one action must occur before another. (c) a complete partially-ordered solution.
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Room 4

Room 3

Room 2

Room 1
Door 1

Door 2

Door 3

Door 4

Box 1

Box 2
Box 3

Shakey

Switch 1

Switch 2

Switch 3

Switch 4

Box 4

Corridor

Figure 10.14 FILES: figures/shakey2.eps (Tue Nov 3 16:23:432009). Shakey’s world. Shakey
can move between landmarks within a room, can pass through the door between rooms, can climb
climbable objects and push pushable objects, and can flip light switches.
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Start

  [0,0]

AddEngine1

30

  [0,15]

AddWheels1

30

  [30,45]

10
Inspect1

  [60,75]

Finish

  [85,85]

10
Inspect2

  [75,75]

15
AddWheels2

  [60,60]

60
AddEngine2

  [0,0]

AddEngine1

AddWheels1

Inspect1

AddWheels2

Inspect2AddEngine2

0 10 20 30 40 50 60 70 80 90

Figure 11.2 FILES: figures/jobshop-cpm.eps (Tue Nov 3 16:23:05 2009).Top: a representation
of the temporal constraints for the job-shop scheduling problem of Figure??. The duration of each
action is given at the bottom of each rectangle. In solving the problem, we compute the earliest and
latest start times as the pair[ES ,LS ], displayed in the upper left. The difference between these two
numbers is theslack of an action; actions with zero slack are on the critical path, shown with bold
arrows. Bottom: the same solution shown as a timeline. Grey rectangles represent time intervals during
which an action may be executed, provided that the ordering constraints are respected. The unoccupied
portion of a gray rectangle indicates the slack.
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AddEngine1

AddWheels1

Inspect1

AddWheels2

Inspect2

AddEngine2

0 10 20 30 40 50 60 70 80 90 100 110 120

EngineHoists(1)

WheelStations(1)

Inspectors(2)

Figure 11.3 FILES: figures/jobshop-resources.eps (Tue Nov3 16:23:05 2009).A solution to the
job-shop scheduling problem from Figure??, taking into account resource constraints. The left-hand
margin lists the three reusable resources, and actions are shown aligned horizontally with the resources
they use. There are two possible schedules, depending on which assembly uses the engine hoist first;
we’ve shown the shortest-duration solution, which takes 115 minutes.



122 Chapter 11. Planning and Acting in the Real World

(a) (b)

Figure 11.6 FILES: figures/reachable-sets.eps (Tue Nov 3 13:47:29 2009).Schematic examples
of reachable sets. The set of goal states is shaded. Black andgray arrows indicate possible implemen-
tations ofh1 andh2, respectively. (a) The reachable set of an HLAh1 in a states. (b) The reachable
set for the sequence[h1, h2]. Because this intersects the goal set, the sequence achieves the goal.
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(a) (b)

Figure 11.7 FILES: figures/approximate-HLA.eps (Tue Nov 3 13:23:08 2009). Goal achieve-
ment for high-level plans with approximate descriptions. The set of goal states is shaded. For each
plan, the pessimistic (solid lines) and optimistic (dashedlines) reachable sets are shown. (a) The plan
indicated by the black arrow definitely achieves the goal, while the plan indicated by the gray arrow
definitely doesn’t. (b) A plan that would need to be refined further to determine if it really does achieve
the goal.
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whole plan

plan

repair

S P

O

E G

continuation

Figure 11.9 FILES: figures/plan-repair.eps (Tue Nov 3 16:23:19 2009). Before execution, the
planner comes up with a plan, here calledwhole plan, to get fromS to G. The agent executes steps of
the plan until it expects to be in stateE, but observes it is actually inO. The agent then replans for the
minimal repair plus continuation to reachG.
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(a) (b) (c)

Figure 11.11 FILES: figures/boids-neurogame.eps (Thu Nov 522:33:01 2009).(a) A simulated
flock of birds, using Reynold’s boids model. Image courtesy Giuseppe Randazzo, novastructura.net. (b)
An actual flock of starlings. Image by Eduardo (pastaboy sleeps on flickr). (c) Two competitive teams
of agents attempting to capture the towers in the NEROgame. Image courtesy Risto Miikkulainen.
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Anything

AbstractObjects

Sets Numbers RepresentationalObjects Interval Places ProcessesPhysicalObjects

Humans

Categories Sentences Measurements Moments Things Stuff

Times Weights Animals Agents Solid Liquid Gas

GeneralizedEvents

Figure 12.1 FILES: figures/everything.eps (Tue Nov 3 16:22:41 2009). The upper ontology of
the world, showing the topics to be covered later in the chapter. Each link indicates that the lower
concept is a specialization of the upper one. Specializations are not necessarily disjoint; a human is
both an animal and an agent, for example. We will see in Section ?? why physical objects come under
generalized events.
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Figure 12.2 FILES: figures/allen-time-interval.eps (Tue Nov 3 16:22:20 2009).Predicates on
time intervals.
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time

1801
1797

1789

Washington

Adams

Jefferson

Figure 12.3 FILES: figures/president-usa.eps (Tue Nov 3 16:23:22 2009).A schematic view of
the objectPresident(USA) for the first 15 years of its existence.
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Figure 12.4 FILES: figures/possible-worlds2.eps (Wed Nov 411:06:34 2009).Possible worlds
with accessibility relationsKSuperman (solid arrows) andKLois (dotted arrows). The propositionR
means “the weather report for tomorrow is rain” andI means “Superman’s secret identity is Clark
Kent.” All worlds are accessible to themselves; the arrows from a world to itself are not shown.
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Male
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Female
Persons

1
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SubsetOf
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MemberOf MemberOf

SisterOf Legs

LegsHasMother

Figure 12.5 FILES: figures/semantic-network.eps (Tue Nov 316:23:41 2009).A semantic net-
work with four objects (John, Mary, 1, and 2) and four categories. Relations are denoted by labeled
links.
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MemberOf

FlyEvents

Fly17

Shankar NewYork NewDelhi Yesterday

Agent

Origin Destination

During

Figure 12.6 FILES: figures/flying-network.eps (Tue Nov 3 16:22:52 2009). A
fragment of a semantic network showing the representation of the logical assertion
Fly(Shankar ,NewYork ,NewDelhi , Yesterday).
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Weather

Toothache Catch

Cavity

decomposes

      into

WeatherToothache Catch

Cavity

decomposes

       into

Coin1 Coinn

Coin1 Coinn

(a) (b)

Figure 13.4 FILES: figures/weather-independence.eps (TueNov 3 16:24:08 2009) figures/coin-
independence.eps (Tue Nov 3 16:22:33 2009).Two examples of factoring a large joint distribution into
smaller distributions, using absolute independence. (a) Weather and dental problems are independent.
(b) Coin flips are independent.
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OK
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Figure 13.5 FILES: figures/wumpus-stuck.eps (Tue Nov 3 16:24:12 2009) figures/wumpus-
variables.eps (Tue Nov 3 16:24:13 2009).(a) After finding a breeze in both [1,2] and [2,1], the
agent is stuck—there is no safe place to explore. (b) Division of the squares intoKnown, Frontier ,
andOther , for a query about [1,3].
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Figure 13.6 FILES: figures/wumpus-fringe-models.eps (TueNov 3 16:24:09 2009).Consistent
models for the frontier variablesP2,2 andP3,1, showingP (frontier) for each model: (a) three models
with P1,3 = true showing two or three pits, and (b) two models withP1,3 = false showing one or two
pits.
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Weather Cavity

Toothache Catch

Figure 14.1 FILES: figures/dentist-network.eps (Tue Nov 3 16:22:37 2009).A simple Bayesian
network in whichWeather is independent of the other three variables andToothache andCatch are
conditionally independent, givenCavity .
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Figure 14.2 FILES: figures/burglary2.eps (Tue Nov 3 16:22:29 2009). A typical Bayesian net-
work, showing both the topology and the conditional probability tables (CPTs). In the CPTs, the letters
B, E, A, J , andM stand forBurglary , Earthquake , Alarm, JohnCalls, andMaryCalls, respec-
tively.
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JohnCalls

(a) (b)

Figure 14.3 FILES: figures/burglary-mess.eps (Tue Nov 3 16:22:29 2009). Network structure
depends on order of introduction. In each network, we have introduced nodes in top-to-bottom order.
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Figure 14.4 FILES: figures/nondescendants.eps (Tue Nov 3 16:23:15 2009) figures/markov-
blanket.eps (Tue Nov 3 16:23:08 2009).(a) A nodeX is conditionally independent of its non-
descendants (e.g., theZijs) given its parents (theUis shown in the gray area). (b) A nodeX is
conditionally independent of all other nodes in the networkgiven its Markov blanket (the gray area).
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HarvestSubsidy

Buys

Cost

Figure 14.5 FILES: figures/continuous-net.eps (Tue Nov 3 16:22:34 2009). A simple network
with discrete variables (Subsidy andBuys) and continuous variables (Harvest andCost).
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Figure 14.6 FILES: . The graphs in (a) and (b) show the probability distribution over Cost as a
function ofHarvest size, withSubsidy true and false, respectively. Graph (c) shows the distribution
P (Cost |Harvest), obtained by summing over the two subsidy cases.



144 Chapter 14. Probabilistic Reasoning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

P
(c

)

Cost c

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

P
(b

uy
s 

| c
)

Cost c

Logit
Probit

(a) (b)

Figure 14.7 FILES: . (a) A normal (Gaussian) distribution for the cost threshold, centered on
µ =6.0 with standard deviationσ =1.0. (b) Logit and probit distributions for the probability ofbuys
givencost , for the parametersµ =6.0 andσ =1.0.
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Figure 14.8 FILES: figures/enumeration-tree.eps (Tue Nov 316:22:41 2009).The structure of
the expression shown in Equation (??). The evaluation proceeds top down, multiplying values along
each path and summing at the “+” nodes. Notice the repetitionof the paths forj andm.
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Figure 14.12 FILES: figures/rain-clustering1.eps (Tue Nov3 16:23:27 2009) figures/rain-
clustering2.eps (Tue Nov 3 16:23:27 2009).(a) A multiply connected network with conditional prob-
ability tables. (b) A clustered equivalent of the multiply connected network.
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Figure 14.17 FILES: figures/new-14-16-1.eps (Tue Nov 3 16:23:14 2009) figures/new-14-16-
2.eps (Tue Nov 3 16:23:14 2009) figures/new-14-16-1.eps (Tue Nov 3 16:23:14 2009).(a) Bayes
net for a single customerC1 recommending a single bookB1. Honest(C1) is Boolean, while the other
variables have integer values from 1 to 5. (b) Bayes net with two customers and two books.
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Figure 14.18 FILES: figures/all-models-both.eps (Tue Nov 316:22:20 2009).Top: Some mem-
bers of the set of all possible worlds for a language with two constant symbols,R andJ , and one binary
relation symbol, under the standard semantics for first-order logic. Bottom: the possible worlds under
database semantics. The interpretation of the constant symbols is fixed, and there is a distinct object for
each constant symbol.
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Figure 14.19 FILES: figures/new-14-18.eps (Tue Nov 3 16:23:14 2009).Fragment of the equiva-
lent Bayes net whenAuthor (B2) is unknown.



150 Chapter 14. Probabilistic Reasoning

Hmother Hfather

Hchild

motherG fatherG

childG

Hmother Hfather

Hchild

motherG fatherG

childG

Hmother Hfather

Hchild

motherG fatherG

childG

(a) (b) (c)

Figure 14.20 FILES: figures/handedness1.eps (Tue Nov 3 16:22:55 2009) fig-
ures/handedness2.eps (Tue Nov 3 16:22:56 2009) figures/handedness3.eps (Tue Nov 3 16:22:56
2009).Three possible structures for a Bayesian network describing genetic inheritance of handedness.
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Figure 14.21 FILES: figures/car-starts.eps (Tue Nov 3 16:22:32 2009). A Bayesian network
describing some features of a car’s electrical system and engine. Each variable is Boolean, and the
true value indicates that the corresponding aspect of the vehicle is in working order.
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Figure 14.22 FILES: figures/telescope-nets.eps (Tue Nov 3 16:23:51 2009).Three possible net-
works for the telescope problem.
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Figure 14.23 FILES: figures/politics.eps (Tue Nov 3 16:23:20 2009). A simple Bayes net with
Boolean variablesB =BrokeElectionLaw , I = Indicted , M =PoliticallyMotivatedProsecutor ,
G =FoundGuilty , J = Jailed .
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Xt–2 Xt–1 Xt(a)

(b)

Xt+1 Xt+2

Xt–2 Xt–1 Xt Xt+1 Xt+2

Figure 15.1 FILES: figures/markov-processes.eps (Tue Nov 316:23:08 2009).(a) Bayesian net-
work structure corresponding to a first-order Markov process with state defined by the variablesXt. (b)
A second-order Markov process.
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Figure 15.2 FILES: figures/umbrella-dbn.eps (Tue Nov 3 16:23:58 2009). Bayesian net-
work structure and conditional distributions describing the umbrella world. The transition model is
P (Raint |Raint−1) and the sensor model isP (Umbrellat |Raint).
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Figure 15.3 FILES: figures/smoothing-dbn.eps (Tue Nov 3 16:23:45 2009).Smoothing computes
P(Xk | e1:t), the posterior distribution of the state at some past timek given a complete sequence of
observations from1 to t.
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Figure 15.5 FILES: figures/umbrella-paths.eps (Tue Nov 3 16:23:59 2009). (a) Possible state
sequences forRaint can be viewed as paths through a graph of the possible states at each time step.
(States are shown as rectangles to avoid confusion with nodes in a Bayes net.) (b) Operation of the
Viterbi algorithm for the umbrella observation sequence[true , true , false, true, true]. For eacht, we
have shown the values of the messagem1:t, which gives the probability of the best sequence reaching
each state at timet. Also, for each state, the bold arrow leading into it indicates its best predecessor as
measured by the product of the preceding sequence probability and the transition probability. Following
the bold arrows back from the most likely state inm1:5 gives the most likely sequence.



159

(a) Posterior distribution over robot location after E1 = NSW

(b) Posterior distribution over robot location after E1 = NSW, E2 = NS

Figure 15.7 FILES: figures/localization-figures-b.eps (Tue Nov 3 16:23:07 2009).Posterior dis-
tribution over robot location: (a) one observationE1 =NSW ; (b) after a second observationE2 =NS.
The size of each disk corresponds to the probability that therobot is at that location. The sensor error
rate isǫ =0.2.
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Figure 15.8 FILES: . Performance of HMM localization as a function of the length of the observa-
tion sequence for various different values of the sensor error probabilityǫ; data averaged over 400 runs.
(a) The localization error, defined as the Manhattan distance from the true location. (b) The Viterbi path
accuracy, defined as the fraction of correct states on the Viterbi path.
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Figure 15.9 FILES: figures/kalman-network.eps (Tue Nov 3 16:23:06 2009).Bayesian network
structure for a linear dynamical system with positionXt, velocity Ẋt, and position measurementZt.
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Figure 15.10 FILES: . Stages in the Kalman filter update cycle for a random walk witha prior
given byµ0 =0.0 andσ0 =1.0, transition noise given byσx =2.0, sensor noise given byσz = 1.0,
and a first observationz1 =2.5 (marked on thex-axis). Notice how the predictionP (x1) is flattened
out, relative toP (x0), by the transition noise. Notice also that the mean of the posterior distribution
P (x1 | z1) is slightly to the left of the observationz1 because the mean is a weighted average of the
prediction and the observation.
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Figure 15.11 FILES: figures/kalman-2D.eps (Tue Nov 3 16:23:06 2009).(a) Results of Kalman
filtering for an object moving on theX–Y plane, showing the true trajectory (left to right), a seriesof
noisy observations, and the trajectory estimated by Kalmanfiltering. Variance in the position estimate
is indicated by the ovals. (b) The results of Kalman smoothing for the same observation sequence.
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(a) (b)

Figure 15.12 FILES: figures/kalman-bird1.eps (Tue Nov 3 16:23:06 2009) figures/kalman-
bird2.eps (Tue Nov 3 16:23:06 2009).A bird flying toward a tree (top views). (a) A Kalman filter will
predict the location of the bird using a single Gaussian centered on the obstacle. (b) A more realistic
model allows for the bird’s evasive action, predicting thatit will fly to one side or the other.
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Figure 15.13 FILES: figures/umbrella-1slice.eps (Tue Nov 316:23:58 2009) figures/robot-
dbn1.eps (Tue Nov 3 16:23:33 2009).(a) Specification of the prior, transition model, and sensor
model for the umbrella DBN. All subsequent slices are assumed to be copies of slice 1. (b) A simple
DBN for robot motion in the X–Y plane.
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Figure 15.14 FILES: . (a) Upper curve: trajectory of the expected value ofBattery t for an obser-
vation sequence consisting of all 5s except for 0s att =21 andt =22, using a simple Gaussian error
model. Lower curve: trajectory when the observation remains at 0 fromt =21 onwards. (b) The same
experiment run with the transient failure model. Notice that the transient failure is handled well, but the
persistent failure results in excessive pessimism about the battery charge.
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Figure 15.15 FILES: figures/battery-persistence.eps (TueNov 3 16:22:26 2009).(a) A DBN
fragment showing the sensor status variable required for modeling persistent failure of the battery sen-
sor. (b) Upper curves: trajectories of the expected value ofBattery t for the “transient failure” and
“permanent failure” observations sequences. Lower curves: probability trajectories forBMBroken

given the two observation sequences.



168 Chapter 15. Probabilistic Reasoning over Time

0.3f
0.7t

P(R  )1R0

0.7

P(R0)

0.2f
0.9t

P(U  )1R1

Umbrella1

Rain0 Rain1

0.7

P(R0)

4

0.2f
0.9t

P(U  )R4

f
t

0.3
0.7

P(R  )4R3

Umbrella4

Rain4

0.2f
0.9t

P(U  )3R3

f
t

R

0.3
0.7

P(R  )32

Umbrella3

Rain3

0.2f
0.9t

P(U  )2R2

f
t

R

0.3
0.7

P(R  )21

Umbrella2

Rain2

0.2f
0.9t

P(U  )1R1

f
t

R

0.3
0.7

P(R  )10

Umbrella1

Rain0 Rain1

Figure 15.16 FILES: figures/dbn-unrolling.eps (Tue Nov 3 16:22:36 2009).Unrolling a dynamic
Bayesian network: slices are replicated to accommodate theobservation sequenceUmbrella1:3. Fur-
ther slices have no effect on inferences within the observation period.
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(b) Weight

Figure 15.18 FILES: figures/umbrella-particle.eps (Tue Nov 3 16:23:59 2009).The particle fil-
tering update cycle for the umbrella DBN withN =10, showing the sample populations of each state.
(a) At timet, 8 samples indicaterain and 2 indicate¬rain. Each is propagated forward by sampling
the next state through the transition model. At timet+1, 6 samples indicaterain and 4 indicate¬rain.
(b) ¬umbrella is observed att + 1. Each sample is weighted by its likelihood for the observation, as
indicated by the size of the circles. (c) A new set of 10 samples is generated by weighted random
selection from the current set, resulting in 2 samples that indicaterain and 8 that indicate¬rain.
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Figure 15.19 FILES: figures/classical-DA.eps (Tue Nov 3 16:22:33 2009).(a) Observations made
of object locations in 2D space over five time steps. Each observation is labeled with the time step
but does not identify the object that produced it. (b–c) Possible hypotheses about the underlying ob-
ject tracks. (d) A hypothesis for the case in which false alarms, detection failures, and track initia-
tion/termination are possible.
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(a) (b)

Figure 15.20 FILES: figures/traffic-upstream.eps (Tue Nov 316:23:58 2009) figures/traffic-
downstream.eps (Tue Nov 3 16:23:57 2009).Images from (a) upstream and (b) downstream surveil-
lance cameras roughly two miles apart on Highway 99 in Sacramento, California. The boxed vehicle
has been identified at both cameras.
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Figure 15.21 FILES: figures/switching-kf.eps (Tue Nov 3 16:23:50 2009).A Bayesian network
representation of a switching Kalman filter. The switching variableSt is a discrete state variable whose
value determines the transition model for the continuous state variablesXt. For any discrete statei,
the transition modelP(Xt+1|Xt, St = i) is a linear Gaussian model, just as in a regular Kalman filter.
The transition model for the discrete state,P(St+1|St), can be thought of as a matrix, as in a hidden
Markov model.
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Figure 16.1 FILES: figures/cash-machine-and-decomposability.eps (Tue Nov 3 13:30:24 2009).
(a) A cycle of exchanges showing that the nontransitive preferencesA ≻ B ≻ C ≻ A result in
irrational behavior. (b) The decomposability axiom.
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Figure 16.2 FILES: figures/utility-curve.eps (Tue Nov 3 16:24:00 2009).The utility of money.
(a) Empirical data for Mr. Beard over a limited range. (b) A typical curve for the full range.
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Figure 16.3 FILES: . Plot of the error in each ofk utility estimates and of the distribution of the
maximum ofk estimates fork =3, 10, and 30.
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Figure 16.4 FILES: figures/strict-dominance.eps (Tue Nov 313:49:56 2009).Strict dominance.
(a) Deterministic: Option A is strictly dominated by B but not by C or D. (b) Uncertain: A is strictly
dominated by B but not by C.
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Figure 16.5 FILES: . Stochastic dominance. (a)S1 stochastically dominatesS2 on cost. (b)
Cumulative distributions for the negative cost ofS1 andS2.
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Figure 16.6 FILES: figures/airport-id.eps (Tue Nov 3 16:22:19 2009).A simple decision network
for the airport-siting problem.
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Figure 16.7 FILES: figures/airport-au-id.eps (Tue Nov 3 16:22:19 2009).A simplified represen-
tation of the airport-siting problem. Chance nodes corresponding to outcome states have been factored
out.
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Figure 16.8 FILES: figures/3cases.eps (Tue Nov 3 16:22:10 2009). Three generic cases for the
value of information. In (a),a1 will almost certainly remain superior toa2, so the information is not
needed. In (b), the choice is unclear and the information is crucial. In (c), the choice is unclear, but
because it makes little difference, the information is lessvaluable. (Note: The fact thatU2 has a high
peak in (c) means that its expected value is known with highercertainty thanU1.)
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Figure 16.10 FILES: figures/heart-infl-diagram.eps (Tue Nov 3 16:23:01 2009).Influence dia-
gram for aortic coarctation (courtesy of Peter Lucas).



183

(i) (ii) (iii)

Flavor

Wrapper Shape

Wrapper Shape

Flavor

Wrapper Shape

Flavor

Figure 16.11 FILES: figures/3candy.eps (Tue Nov 3 16:22:10 2009). Three proposed Bayes nets
for the Surprise Candy problem, Exercise??.
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Figure 16.12 FILES: figures/3candy.eps (Tue Nov 3 16:22:10 2009). Three proposed Bayes nets
for the Surprise Candy problem, Exercise??.
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Figure 17.1 FILES: figures/sequential-decision-world.eps (Tue Nov 3 16:23:43 2009).(a) A
simple4× 3 environment that presents the agent with a sequential decision problem. (b) Illustration of
the transition model of the environment: the “intended” outcome occurs with probability 0.8, but with
probability 0.2 the agent moves at right angles to the intended direction. A collision with a wall results
in no movement. The two terminal states have reward +1 and –1,respectively, and all other states have
a reward of –0.04.
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Figure 17.2 FILES: figures/sequential-decision-policies.eps (Tue Nov 3 16:23:42 2009).(a) An
optimal policy for the stochastic environment withR(s)= −0.04 in the nonterminal states. (b) Optimal
policies for four different ranges ofR(s).
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Figure 17.3 FILES: figures/sequential-decision-values.eps (Tue Nov 3 16:23:42 2009).The util-
ities of the states in the4× 3 world, calculated withγ = 1 andR(s)= − 0.04 for nonterminal states.



189

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)

(1,1)
(3,1)

(4,1)

1

10

100

1000

10000

100000

1e+06

1e+07

0.50.550.60.650.70.750.80.850.90.95 1

Ite
ra

tio
ns

 r
eq

ui
re

d

Discount factor γ

c = 0.0001
c = 0.001
c = 0.01
c = 0.1

(a) (b)

Figure 17.5 FILES: . (a) Graph showing the evolution of the utilities of selectedstates using value
iteration. (b) The number of value iterationsk required to guarantee an error of at mostǫ = c · Rmax,
for different values ofc, as a function of the discount factorγ.
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Figure 17.6 FILES: . The maximum error||Ui − U || of the utility estimates and the policy loss
||Uπi − U ||, as a function of the number of iterations of value iteration.
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Figure 17.8 FILES: . (a) Utility of two one-step plans as a function of the initialbelief stateb(1)
for the two-state world, with the corresponding utility function shown in bold. (b) Utilities for 8 distinct
two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility function for optimal eight-
step plans.
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Figure 17.10 FILES: figures/generic-ddn.eps (Tue Nov 3 16:22:53 2009).The generic structure
of a dynamic decision network. Variables with known values are shaded. The current time ist and the
agent must decide what to do—that is, choose a value forAt. The network has been unrolled into the
future for three steps and represents future rewards, as well as the utility of the state at the look-ahead
horizon.



193

. . .
... ... ...

.........

. . .

.........

.........

. . .

...

. . .

......

. . .

...

. . .

At in P(Xt | E1:t)

At+1 in P(Xt+1 | E1:t+1)

At+2 in P(Xt+2 | E1:t+2)

U(Xt+3)

Et+1

Et+2

Et+3

10 4 6 3

Figure 17.11 FILES: figures/pomdp-tree.eps (Tue Nov 3 16:23:20 2009).Part of the look-ahead
solution of the DDN in Figure 17.10. Each decision will be taken in the belief state indicated.
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Figure 17.12 FILES: figures/morra-trees.eps (Tue Nov 3 16:23:11 2009).(a) and (b): Minimax
game trees for two-finger Morra if the players take turns playing pure strategies. (c) and (d): Parame-
terized game trees where the first player plays a mixed strategy. The payoffs depend on the probability
parameter (p or q) in the mixed strategy. (e) and (f): For any particular valueof the probability parame-
ter, the second player will choose the “better” of the two actions, so the value of the first player’s mixed
strategy is given by the heavy lines. The first player will choose the probability parameter for the mixed
strategy at the intersection point.
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Figure 17.13 FILES: figures/extensive-game.eps (Tue Nov 3 16:22:45 2009).Extensive form of
a simplified version of poker.
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Figure 17.14 FILES: figures/grid-mdp-figure.eps (Tue Nov 3 16:22:55 2009). (a) 3× 3 world
for Exercise??. The reward for each state is indicated. The upper right square is a terminal state. (b)
101× 3 world for Exercise?? (omitting 93 identical columns in the middle). The start state has reward
0.
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(c)(a) (b) (d)
x x x x

f(x) f(x) f(x) f(x)

Figure 18.1 FILES: figures/xy-plot.eps (Tue Nov 3 16:24:13 2009). (a) Example(x, f(x)) pairs
and a consistent, linear hypothesis. (b) A consistent, degree-7 polynomial hypothesis for the same data
set. (c) A different data set, which admits an exact degree-6polynomial fit or an approximate linear fit.
(d) A simple, exact sinusoidal fit to the same data set.
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Figure 18.2 FILES: figures/restaurant-tree.eps (Tue Nov 3 16:23:29 2009).A decision tree for
deciding whether to wait for a table.
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Figure 18.4 FILES: figures/restaurant-stub.eps (Tue Nov 3 16:23:28 2009). Splitting the ex-
amples by testing on attributes. At each node we show the positive (light boxes) and negative (dark
boxes) examples remaining. (a) Splitting onType brings us no nearer to distinguishing between posi-
tive and negative examples. (b) Splitting onPatrons does a good job of separating positive and negative
examples. After splitting onPatrons, Hungry is a fairly good second test.
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Figure 18.6 FILES: figures/induced-restaurant-tree.eps (Tue Nov 3 16:23:04 2009).The deci-
sion tree induced from the 12-example training set.
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Figure 18.7 FILES: . A learning curve for the decision tree learning algorithm on100 randomly
generated examples in the restaurant domain. Each data point is the average of 20 trials.
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Figure 18.9 FILES: . Error rates on training data (lower, dashed line) and validation data (upper,
solid line) for different size decision trees. We stop when the training set error rate asymptotes, and
then choose the tree with minimal error on the validation set; in this case the tree of size 7 nodes.
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Figure 18.10 FILES: figures/decision-list.eps (Tue Nov 3 16:22:37 2009).A decision list for the
restaurant problem.
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Figure 18.12 FILES: . Learning curve for DECISION-L IST-LEARNING algorithm on the restaurant
data. The curve for DECISION-TREE-LEARNING is shown for comparison.
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Figure 18.13 FILES: . (a) Data points of price versus floor space of houses for sale in Berkeley,
CA, in July 2009, along with the linear function hypothesis that minimizes squared error loss:y =
0.232x + 246. (b) Plot of the loss function

P

j
(w1xj + w0 − yj)

2 for various values ofw0, w1. Note
that the loss function is convex, with a single global minimum.
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Figure 18.14 FILES: figures/diamond.eps (Wed Nov 4 14:45:532009). Why L1 regularization
tends to produce a sparse model. (a) WithL1 regularization (box), the minimal achievable loss (con-
centric contours) often occurs on an axis, meaning a weight of zero. (b) WithL2 regularization (circle),
the minimal loss is likely to occur anywhere on the circle, giving no preference to zero weights.
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Figure 18.15 FILES: . (a) Plot of two seismic data parameters, body wave magnitudex1 and surface
wave magnitudex2, for earthquakes (white circles) and nuclear explosions (black circles) occurring
between 1982 and 1990 in Asia and the Middle East (?). Also shown is a decision boundary between
the classes. (b) The same domain with more data points. The earthquakes and explosions are no longer
linearly separable.
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Figure 18.16 FILES: . (a) Plot of total training-set accuracy vs. number of iterations through the
training set for the perceptron learning rule, given the earthquake/explosion data in Figure 18.14(a).
(b) The same plot for the noisy, non-separable data in Figure18.14(b); note the change in scale of the
x-axis. (c) The same plot as in (b), with a learning rate schedule α(t) =1000/(1000 + t).
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Figure 18.17 FILES: . (a) The hard threshold functionThreshold(z) with 0/1 output. Note that
the function is nondifferentiable atz =0. (b) The logistic function,Logistic(z) = 1

1+e−z , also known
as the sigmoid function. (c) Plot of a logistic regression hypothesishw(x)= Logistic(w ·x) for the data
shown in Figure 18.14(b).
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Figure 18.18 FILES: . Repeat of the experiments in Figure 18.15 using logistic regression and
squared error. The plot in (a) covers 5000 iterations ratherthan 1000, while (b) and (c) use the same
scale.
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Figure 18.19 FILES: figures/neuron-unit.eps (Wed Nov 4 11:23:13 2009).A simple mathemat-
ical model for a neuron. The unit’s output activation isaj = g(

Pn

i = 0
wi,jai), whereai is the output

activation of uniti andwi,j is the weight on the link from uniti to this unit.
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Figure 18.20 FILES: figures/neural-net.eps (Wed Nov 4 11:08:22 2009). (a) A perceptron net-
work with two inputs and two output units. (b) A neural network with two inputs, one hidden layer of
two units, and one output unit. Not shown are the dummy inputsand their associated weights.
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Figure 18.21 FILES: figures/perceptron-linear.eps (Tue Nov 3 16:23:17 2009).Linear separa-
bility in threshold perceptrons. Black dots indicate a point in the input space where the value of the
function is 1, and white dots indicate a point where the valueis 0. The perceptron returns 1 on the
region on the non-shaded side of the line. In (c), no such lineexists that correctly classifies the inputs.
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Figure 18.22 FILES: . Comparing the performance of perceptrons and decision trees. (a) Percep-
trons are better at learning the majority function of 11 inputs. (b) Decision trees are better at learning
theWillWait predicate in the restaurant example.
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Figure 18.23 FILES: . (a) The result of combining two opposite-facing soft threshold functions to
produce a ridge. (b) The result of combining two ridges to produce a bump.
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Figure 18.25 FILES: . (a) Training curve showing the gradual reduction in error asweights are
modified over several epochs, for a given set of examples in the restaurant domain. (b) Comparative
learning curves showing that decision-tree learning does slightly better on the restaurant problem than
back-propagation in a multilayer network.
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Figure 18.26 FILES: figures/earthquake-nn1.eps (Tue Nov 3 16:22:38 2009)
figures/earthquake-nn5.eps (Tue Nov 3 16:22:38 2009). (a) A k-nearest-neighbor model
showing the extent of the explosion class for the data in Figure 18.14, withk =1. Overfitting is
apparent. (b) Withk =5, the overfitting problem goes away for this data set.
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Figure 18.27 FILES: . The curse of dimensionality: (a) The length of the average neighborhood
for 10-nearest-neighbors in a unit hypercube with 1,000,000 points, as a function of the number of
dimensions. (b) The proportion of points that fall within a thin shell consisting of the outer 1% of the
hypercube, as a function of the number of dimensions. Sampled from 10,000 randomly distributed
points.
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Figure 18.28 FILES: . Nonparametric regression models: (a) connect the dots, (b)3-nearest neigh-
bors average, (c) 3-nearest-neighbors linear regression,(d) locally weighted regression with a quadratic
kernel of widthk = 10.
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Figure 18.29 FILES: . A quadratic kernel,K(d)= max(0, 1 − (2|x|/k)2), with kernel width
k =10, centered on the query pointx= 0.
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Figure 18.30 FILES: . Support vector machine classification: (a) Two classes of points (black and
white circles) and three candidate linear separators. (b) The maximum margin separator (heavy line),
is at the midpoint of themargin (area between dashed lines). Thesupport vectors (points with large
circles) are the examples closest to the separator.



223

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2

x1

0
0.5

1
1.5

2x1
2 0.5

1

1.5

2

2.5

x2
2

-3
-2
-1
0
1
2
3

√2x1x2

(a) (b)

Figure 18.31 FILES: . (a) A two-dimensional training set with positive examples as black circles
and negative examples as white circles. The true decision boundary,x2

1 + x2
2 ≤ 1, is also shown.

(b) The same data after mapping into a three-dimensional input space(x2
1, x

2
2,
√

2x1x2). The circular
decision boundary in (a) becomes a linear decision boundaryin three dimensions. Figure 18.29(b) gives
a closeup of the separator in (b).
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Figure 18.32 FILES: figures/ensemble-expressiveness.eps(Tue Nov 3 16:22:41 2009).Illustra-
tion of the increased expressive power obtained by ensemblelearning. We take three linear threshold
hypotheses, each of which classifies positively on the unshaded side, and classify as positive any exam-
ple classified positively by all three. The resulting triangular region is a hypothesis not expressible in
the original hypothesis space.
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Figure 18.33 FILES: figures/boosting.eps (Tue Nov 3 16:22:28 2009). How the boosting algo-
rithm works. Each shaded rectangle corresponds to an example; the height of the rectangle corresponds
to the weight. The checks and crosses indicate whether the example was classified correctly by the
current hypothesis. The size of the decision tree indicatesthe weight of that hypothesis in the final
ensemble.
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Figure 18.35 FILES: . (a) Graph showing the performance of boosted decision stumps withK =5
versus unboosted decision stumps on the restaurant data. (b) The proportion correct on the training set
and the test set as a function ofK, the number of hypotheses in the ensemble. Notice that the test set
accuracy improves slightly even after the training accuracy reaches 1, i.e., after the ensemble fits the
data exactly.
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Figure 18.36 FILES: figures/easy-hard.eps (Wed Nov 4 15:38:34 2009). Examples from the
NIST database of handwritten digits. Top row: examples of digits 0–9 that are easy to identify. Bottom
row: more difficult examples of the same digits.
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Figure 18.37 FILES: . Learning curves for five learning algorithms on a common task. Note that
there appears to be more room for improvement in the horizontal direction (more training data) than in
the vertical direction (different machine learning algorithm). Adapted from ? (?).
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Figure 19.1 FILES: figures/cbh.eps (Tue Nov 3 16:22:32 2009). (a) A consistent hypothesis. (b) A
false negative. (c) The hypothesis is generalized. (d) A false positive. (e) The hypothesis is specialized.
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This region all inconsistent

This region all inconsistent

More general

More specific

S1

G1

S2

G2 G3  . . . Gm

 . . . Sn

Figure 19.4 FILES: figures/version-space.eps (Tue Nov 3 16:24:02 2009). The version space
contains all hypotheses consistent with the examples.
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Figure 19.5 FILES: figures/vs-proof.eps (Tue Nov 3 16:24:052009).The extensions of the mem-
bers ofG andS. No known examples lie in between the two sets of boundaries.



233

Observations PredictionsHypotheses

Prior 
knowledge

Knowledge-based
inductive learning

Figure 19.6 FILES: figures/cumulative-learning.eps (Tue Nov 3 16:22:36 2009).A cumulative
learning process uses, and adds to, its stock of background knowledge over time.
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Primitive(X)

ArithmeticUnknown(X)

Primitive(z)

ArithmeticUnknown(z)

Simplify(X,w)

Yes, {  }

Yes, {x / 1, v / y+z}

Simplify(y+z,w)

Rewrite(y+z,v')

Yes, {y / 0, v'/ z}

{w / X}

Yes, {  }

Yes, {v / 0+X}

Yes, {v' / X}

Simplify(z,w)

{w / z}

Simplify(1 × (0+X),w)

Rewrite(x × (y+z),v)

Simplify(x × (y+z),w)

Rewrite(1 × (0+X),v) Simplify(0+X,w)

Rewrite(0+X,v')

Figure 19.7 FILES: figures/simplify-proof2.eps (Tue Nov 3 16:23:44 2009).Proof trees for the
simplification problem. The first tree shows the proof for theoriginal problem instance, from which we
can derive

ArithmeticUnknown(z) ⇒ Simplify(1 × (0 + z), z) .

The second tree shows the proof for a problem instance with all constants replaced by variables, from
which we can derive a variety of other rules.
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Figure 19.9 FILES: . A performance comparison between DECISION-TREE-LEARNING and
RBDTL on randomly generated data for a target function that depends on only 5 of 16 attributes.
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2mhr - Four-helical up-and-down bundle

H:1[19-37]

H:2[41-64]
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H:4[61-64]

H:5[66-70]

H:6[79-88]
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E:1[57-59]

E:2[96-98]

1omd - EF-Hand

(a) (b)

Figure 19.10 FILES: figures/pdb2mhr.eps (Tue Nov 3 16:23:152009) figures/pdb1omd.eps
(Tue Nov 3 16:23:15 2009).(a) and (b) show positive and negative examples, respectively, of the
“four-helical up-and-down bundle” concept in the domain ofprotein folding. Each example struc-
ture is coded into a logical expression of about 100 conjuncts such asTotalLength(D2mhr , 118) ∧
NumberHelices(D2mhr , 6) ∧ . . .. From these descriptions and from classifications such as
Fold(FOUR-HELICAL -UP-AND-DOWN-BUNDLE, D2mhr), the ILP system PROGOL (?) learned the
following rule:

Fold(FOUR-HELICAL -UP-AND-DOWN-BUNDLE, p) ⇐
Helix(p, h1) ∧ Length(h1, HIGH) ∧ Position(p, h1, n)
∧ (1 ≤ n ≤ 3) ∧ Adjacent(p, h1, h2) ∧ Helix(p, h2) .

This kind of rule could not be learned, or even represented, by an attribute-based mechanism such as
we saw in previous chapters. The rule can be translated into English as “ Proteinp has fold class “Four-
helical up-and-down-bundle” if it contains a long helixh1 at a secondary structure position between 1
and 3 andh1 is next to a second helix.”
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Anne Sarah Edward Sophie

Louise James

Figure 19.11 FILES: figures/family1.eps (Tue Nov 3 16:22:462009).A typical family tree.
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{y/Anne}

Parent(Elizabeth,Anne)

Grandparent(George,Anne)Grandparent(George,Anne)

Grandparent(George,y)Parent(Elizabeth,y)

>

{x/George, z/Elizabeth}

Parent(George,Elizabeth)

>

Parent(z,y) Grandparent(x,y)

>

Parent(x,z)¬ ¬

¬

¬

Figure 19.13 FILES: figures/inverse-proof.eps (Tue Nov 3 16:23:05 2009). Early steps in an
inverse resolution process. The shaded clauses are generated by inverse resolution steps from the clause
to the right and the clause below. The unshaded clauses are from theDescriptions andClassifications

(including negatedClassifications ).
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{x/George}

Father(x,y) P(x,y)

>

Father(George,y) Ancestor(George,y)

>

P(George,y) Ancestor(George,y)

>

¬ ¬

Figure 19.14 FILES: figures/new-predicate.eps (Tue Nov 3 16:23:14 2009).An inverse resolu-
tion step that generates a new predicateP .
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Figure 20.1 FILES: . (a) Posterior probabilitiesP (hi | d1, . . . , dN) from Equation (??). The num-
ber of observationsN ranges from 1 to 10, and each observation is of a lime candy. (b) Bayesian
predictionP (dN+1 = lime | d1, . . . , dN) from Equation (??).



242 Chapter 20. Learning Probabilistic Models
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P(F=cherry)
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Wrapper

(b)

θ
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P(W=red | F)

θ1

θ2

Figure 20.2 FILES: figures/ml-networks.eps (Tue Nov 3 16:23:11 2009). (a) Bayesian network
model for the case of candies with an unknown proportion of cherries and limes. (b) Model for the case
where the wrapper color depends (probabilistically) on thecandy flavor.
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Figure 20.3 FILES: . The learning curve for naive Bayes learning applied to the restaurant problem
from Chapter 18; the learning curve for decision-tree learning is shown for comparison.
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Figure 20.4 FILES: . (a) A linear Gaussian model described asy = θ1x + θ2 plus Gaussian noise
with fixed variance. (b) A set of 50 data points generated fromthis model.
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Figure 20.5 FILES: . Examples of thebeta[a, b] distribution for different values of[a, b].
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Flavor1

Wrapper1

Flavor2
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Flavor3

Wrapper3

Θ

Θ1 Θ2

Figure 20.6 FILES: figures/bayesian-learning-network.eps (Tue Nov 3 16:22:26 2009). A
Bayesian network that corresponds to a Bayesian learning process. Posterior distributions for the pa-
rameter variablesΘ, Θ1, andΘ2 can be inferred from their prior distributions and the evidence in the
Flavor i andWrapper i variables.
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Figure 20.7 FILES: . (a) A 3D plot of the mixture of Gaussians from Figure 20.11(a). (b) A
128-point sample of points from the mixture, together with two query points (small squares) and their
10-nearest-neighborhoods (medium and large circles).
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Figure 20.8 FILES: . Density estimation usingk-nearest-neighbors, applied to the data in Fig-
ure 20.7(b), fork = 3, 10, and40 respectively.k = 3 is too spiky, 40 is too smooth, and 10 is just about
right. The best value fork can be chosen by cross-validation.
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Figure 20.9 FILES: . Kernel density estimation for the data in Figure 20.7(b), using Gaussian
kernels withw =0.02, 0.07, and0.20 respectively.w =0.07 is about right.
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Smoking Diet Exercise
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Figure 20.10 FILES: figures/313-heart-disease.eps (Tue Nov 3 16:22:09 2009).(a) A simple di-
agnostic network for heart disease, which is assumed to be a hidden variable. Each variable has three
possible values and is labeled with the number of independent parameters in its conditional distribu-
tion; the total number is 78. (b) The equivalent network withHeartDisease removed. Note that the
symptom variables are no longer conditionally independentgiven their parents. This network requires
708 parameters.
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Figure 20.11 FILES: . (a) A Gaussian mixture model with three components; the weights (left-
to-right) are 0.2, 0.3, and 0.5. (b) 500 data points sampled from the model in (a). (c) The model
reconstructed by EM from the data in (b).
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Figure 20.12 FILES: . Graphs showing the log likelihood of the data,L, as a function of the EM
iteration. The horizontal line shows the log likelihood according to the true model. (a) Graph for the
Gaussian mixture model in Figure 20.11. (b) Graph for the Bayesian network in Figure 20.13(a).
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Figure 20.13 FILES: figures/mixture-networks.eps (Tue Nov3 16:23:11 2009).(a) A mixture
model for candy. The proportions of different flavors, wrappers, presence of holes depend on the bag,
which is not observed. (b) Bayesian network for a Gaussian mixture. The mean and covariance of the
observable variablesX depend on the componentC.
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Figure 20.14 FILES: figures/dbn-unrolling.eps (Tue Nov 3 16:22:36 2009).An unrolled dynamic
Bayesian network that represents a hidden Markov model (repeat of Figure 15.16).
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Figure 21.1 FILES: figures/4x3-optimal-policy.eps (Tue Nov 3 16:22:11 2009)
figures/sequential-decision-values.eps (Tue Nov 3 16:23:42 2009). (a) A policy π for the
4× 3 world; this policy happens to be optimal with rewards ofR(s)= − 0.04 in the nonterminal
states and no discounting. (b) The utilities of the states inthe4× 3 world, given policyπ.
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Figure 21.3 FILES: . The passive ADP learning curves for the4 × 3 world, given the optimal
policy shown in Figure 21.1. (a) The utility estimates for a selected subset of states, as a function of the
number of trials. Notice the large changes occurring aroundthe 78th trial—this is the first time that the
agent falls into the−1 terminal state at (4,2). (b) The root-mean-square error (see Appendix A) in the
estimate forU(1, 1), averaged over 20 runs of 100 trials each.
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Figure 21.5 FILES: . The TD learning curves for the4 × 3 world. (a) The utility estimates for a
selected subset of states, as a function of the number of trials. (b) The root-mean-square error in the
estimate forU(1, 1), averaged over 20 runs of 500 trials each. Only the first 100 trials are shown to
enable comparison with Figure 21.3.
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Figure 21.6 FILES: figures/4x3-greedy-adp-policy.eps (Tue Nov 3 16:22:10 2009).Performance
of a greedy ADP agent that executes the action recommended bythe optimal policy for the learned
model. (a) RMS error in the utility estimates averaged over the nine nonterminal squares. (b) The
suboptimal policy to which the greedy agent converges in this particular sequence of trials.
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Figure 21.7 FILES: . Performance of the exploratory ADP agent. usingR+ = 2 andNe = 5. (a)
Utility estimates for selected states over time. (b) The RMSerror in utility values and the associated
policy loss.
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x

θ

Figure 21.9 FILES: figures/cart-pole.eps (Tue Nov 3 16:22:32 2009). Setup for the problem of
balancing a long pole on top of a moving cart. The cart can be jerked left or right by a controller that
observesx, θ, ẋ, andθ̇.
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Figure 21.10 FILES: figures/heliComposite.eps (Tue Nov 3 16:23:02 2009).Superimposed time-
lapse images of an autonomous helicopter performing a very difficult “nose-in circle” maneuver. The
helicopter is under the control of a policy developed by the PEGASUS policy-search algorithm. A
simulator model was developed by observing the effects of various control manipulations on the real
helicopter; then the algorithm was run on the simulator model overnight. A variety of controllers were
developed for different maneuvers. In all cases, performance far exceeded that of an expert human pilot
using remote control. (Image courtesy of Andrew Ng.)
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Figure 22.2 FILES: figures/freitag.eps (Tue Nov 3 16:22:53 2009).Hidden Markov model for the
speakerof a talk announcement. The two square states are the target (note the second target state has
a self-loop, so the target can match a string of any length), the four circles to the left are the prefix, and
the one on the right is the postfix. For each state, only a few ofthe high-probability words are shown.
From ? (?).
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Article Noun

wumpus

Verb

NP VP

S

Every smells

0.25

0.90

 0.05  0.15  0.10

 0.40

Figure 23.3 FILES: figures/parse-pcfg.eps (Tue Nov 3 16:23:15 2009). Parse tree for
the sentence “Every wumpus smells” according to the grammarE0. Each interior node
of the tree is labeled with its probability. The probabilityof the tree as a whole is
0.9× 0.25× 0.05× 0.15× 0.40× 0.10 =0.0000675. Since this tree is the only parse of the sentence,
that number is also the probability of the sentence. The treecan also be written in linear form as
[S [NP [Article every] [Noun wumpus]][VP [Verb smells]]].
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Figure 23.9 FILES: figures/parse2.eps (Tue Nov 3 16:23:15 2009). Parse tree with semantic in-
terpretations for the string “3 + (4 ÷ 2)”.
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John loves Mary

Name(John) Name(Mary)

NP(Mary)NP(John)

S(Loves(John,Mary))

Verb(λy λx Loves(x,y))

VP(λx Loves(x,Mary))

Figure 23.11 FILES: figures/john-mary-semantics.eps (TueNov 3 16:23:05 2009).A parse tree
with semantic interpretations for the string “John loves Mary”.
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Interlingua Semantics
Attraction(NamedJohn, NamedMary, High)

English Words
John loves Mary

French Words
Jean aime Marie

English Syntax
S(NP(John), VP(loves, NP(Mary))) S(NP(Jean), VP(aime, NP(Marie)))

French Syntax

English Semantics
Loves(John, Mary) Aime(Jean, Marie)

French Semantics

Figure 23.12 FILES: figures/mt-interlingua.eps (Tue Nov 3 16:23:11 2009).The Vauquois trian-
gle: schematic diagram of the choices for a machine translation system (?). We start with English text at
the top. An interlingua-based system follows the solid lines, parsing English first into a syntactic form,
then into a semantic representation and an interlingua representation, and then through generation to
a semantic, syntactic, and lexical form in French. A transfer-based system uses the dashed lines as a
shortcut. Different systems make the transfer at differentpoints; some make it at multiple points.
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Figure 23.13 FILES: figures/mt-alignment3.eps (Wed Nov 4 11:23:52 2009).Candidate French
phrases for each phrase of an English sentence, with distortion (d) values for each French phrase.
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Figure 23.15 FILES: figures/sr-acoustic-frames.eps (Tue Nov 3 16:23:46 2009).Translating the
acoustic signal into a sequence of frames. In this diagram each frame is described by the discretized
values of three acoustic features; a real system would have dozens of features.
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Figure 23.16 FILES: figures/sr-hmm.eps (Tue Nov 3 16:23:46 2009). An HMM for the three-
state phone [m]. Each state has several possible outputs, each with its own probability. The MFCC
feature labelsC1 throughC7 are arbitrary, standing for some combination of feature values.
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Figure 23.17 FILES: figures/sr-tomato.eps (Tue Nov 3 16:23:46 2009).Two pronunciation mod-
els of the word “tomato.” Each model is shown as a transition diagram with states as circles and arrows
showing allowed transitions with their associated probabilities. (a) A model allowing for dialect differ-
ences. The 0.5 numbers are estimates based on the two authors’ preferred pronunciations. (b) A model
with a coarticulation effect on the first vowel, allowing either the [ow] or the [ah] phone.
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Figure 24.1 FILES: figures/c24f001.eps (Tue Nov 3 16:22:30 2009). Imaging distorts geometry.
Parallel lines appear to meet in the distance, as in the imageof the railway tracks on the left. In the
center, a small hand blocks out most of a large moon. On the right is a foreshortening effect: the hand
is tilted away from the eye, making it appear shorter than in the center figure.
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Figure 24.2 FILES: figures/newpinhole.eps (Tue Nov 3 16:23:14 2009).Each light-sensitive el-
ement in the image plane at the back of a pinhole camera receives light from a the small range of
directions that passes through the pinhole. If the pinhole is small enough, the result is a focused image
at the back of the pinhole. The process of projection means that large, distant objects look the same as
smaller, nearby objects. Note that the image is projected upside down.
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Figure 24.3 FILES: figures/lens-eye.eps (Tue Nov 3 16:23:062009). Lenses collect the light
leaving a scene point in a range of directions, and steer it all to arrive at a single point on the image
plane. Focusing works for points lying close to a focal planein space; other points will not be focused
properly. In cameras, elements of the lens system move to change the focal plane, whereas in the eye,
the shape of the lens is changed by specialized muscles.
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Specularities

Cast shadow

Diffuse reflection, bright

Diffuse reflection, dark

Figure 24.4 FILES: figures/illumination.eps (Tue Nov 3 16:23:04 2009).A variety of illumina-
tion effects. There are specularities on the metal spoon andon the milk. The bright diffuse surface is
bright because it faces the light direction. The dark diffuse surface is dark because it is tangential to the
illumination direction. The shadows appear at surface points that cannot see the light source. Photo by
Mike Linksvayer (mlinksva on flickr).
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θ θ

Figure 24.5 FILES: figures/lambert.eps (Tue Nov 3 13:41:38 2009). Two surface patches are
illuminated by a distant point source, whose rays are shown as gray arrowheads. Patch A is tilted away
from the source (θ is close to900) and collects less energy, because it cuts fewer light rays per unit
surface area. Patch B, facing the source (θ is close to00), collects more energy.
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Figure 24.6 FILES: figures/diff-edges.eps (Tue Nov 3 16:22:37 2009).Different kinds of edges:
(1) depth discontinuities; (2) surface orientation discontinuities; (3) reflectance discontinuities; (4) illu-
mination discontinuities (shadows).



281

(a) (b)

Figure 24.7 FILES: figures/stapler1-test.eps (Tue Nov 3 16:23:47 2009) figures/stapler1.edge-
test.eps (Tue Nov 3 16:23:47 2009).(a) Photograph of a stapler. (b) Edges computed from (a).
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Figure 24.8 FILES: figures/edgewderiv.eps (Tue Nov 3 16:22:41 2009). Top: Intensity profile
I(x) along a one-dimensional section across an edge atx= 50. Middle: The derivative of intensity,
I ′(x). Large values of this function correspond to edges, but the function is noisy. Bottom: The
derivative of a smoothed version of the intensity,(I ∗ Gσ)′, which can be computed in one step as the
convolutionI ∗ G′

σ . The noisy candidate edge atx =75 has disappeared.
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(a) (b)

Figure 24.9 FILES: figures/lightricegrad.eps (Wed Nov 4 15:09:20 2009) fig-
ures/darkricegrad.eps (Wed Nov 4 15:09:26 2009).Two images of the same texture of crumpled rice
paper, with different illumination levels. The gradient vector field (at every eighth pixel) is plotted on
top of each one. Notice that, as the light gets darker, all thegradient vectors get shorter. The vectors do
not rotate, so the gradient orientations do not change.
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Figure 24.10 FILES: figures/broxrevised.eps (Tue Nov 3 16:22:29 2009) figures/broxIn1.eps
(not found) figures/broxIn2.eps (not found) figures/broxFlow.eps (not found). Two frames of a
video sequence. On the right is the optical flow field corresponding to the displacement from one frame
to the other. Note how the movement of the tennis racket and the front leg is captured by the directions
of the arrows. (Courtesy of Thomas Brox.)
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(a) (b) (c) (d)

Figure 24.11 FILES: figures/101087.eps (Tue Nov 3 16:22:07 2009) figures/101087-ucm-th0.eps
(not found) figures/101087-seg-th0.eps (not found) figures/101087-seg-th0-5.eps (not found).(a)
Original image. (b) Boundary contours, where the higher thePb value, the darker the contour. (c)
Segmentation into regions, corresponding to a fine partition of the image. Regions are rendered in their
mean colors. (d) Segmentation into regions, correspondingto a coarser partition of the image, resulting
in fewer regions. (Courtesy of Pablo Arbelaez, Michael Maire, Charles Fowlkes, and Jitendra Malik)
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Figure 24.12 FILES: figures/facesys.eps (not found) figures/facesys2.eps (Tue Nov 3 16:22:46
2009). Face finding systems vary, but most follow the architecture illustrated in two parts here. On
the top, we go from images to responses, then apply non-maximum suppression to find the strongest
local response. The responses are obtained by the process illustrated on the bottom. We sweep a
window of fixed size over larger and smaller versions of the image, so as to find smaller or larger faces,
respectively. The illumination in the window is corrected,and then a regression engine (quite often,
a neural net) predicts the orientation of the face. The window is corrected to this orientation and then
presented to a classifier. Classifier outputs are then postprocessed to ensure that only one face is placed
at each location in the image.
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Foreshortening Aspect

Occlusion Deformation

Figure 24.13 FILES: figures/c24f013.eps (Tue Nov 3 16:22:302009). Sources of appearance
variation. First, elements can foreshorten, like the circular patch on the top left. This patch is viewed at
a slant, and so is elliptical in the image. Second, objects viewed from different directions can change
shape quite dramatically, a phenomenon known as aspect. On the top right are three different aspects
of a doughnut. Occlusion causes the handle of the mug on the bottom left to disappear when the mug
is rotated. In this case, because the body and handle belong to the same mug, we have self-occlusion.
Finally, on the bottom right, some objects can deform dramatically.
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Figure 24.14 FILES: figures/hogfig.eps (Tue Nov 3 16:23:03 2009). Local orientation histograms
are a powerful feature for recognizing even quite complex objects. On the left, an image of a pedestrian.
On the center left, local orientation histograms for patches. We then apply a classifier such as a support
vector machine to find the weights for each histogram that best separate the positive examples of pedes-
trians from non-pedestrians. We see that the positively weighted components look like the outline of a
person. The negative components are less clear; they represent all the patterns that are not pedestrians.
Figure from ? (?)c© IEEE.
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Figure 24.15 FILES: figures/lowefig.eps (Wed Nov 4 14:48:27 2009). Another example of object
recognition, this one using the SIFT feature (Scale Invariant Feature Transform), an earlier version of
the HOG feature. On theleft, images of a shoe and a telephone that serve as object models.In the
center, a test image. On theright , the shoe and the telephone have been detected by: finding points
in the image whose SIFT feature descriptions match a model; computing an estimate of pose of the
model; and verifying that estimate. A strong match is usually verified with rare false positives. Images
from ? (?) c© IEEE.
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Figure 24.16 FILES: figures/c24f017.eps (Tue Nov 3 16:22:312009) figures/stereo-1.eps (not
found) figures/stereo-2.eps (not found).Translating a camera parallel to the image plane causes image
features to move in the camera plane. The disparity in positions that results is a cue to depth. If we
superimpose left and right image, as in (b), we see the disparity.



291

b

δθ/2

δZ

PP0

PR

PL

Left

eye

Z

Right

eye

θ

Figure 24.17 FILES: figures/stereopsis.eps (Tue Nov 3 16:23:49 2009). The relation between
disparity and depth in stereopsis. The centers of projection of the two eyes areb apart, and the optical
axes intersect at the fixation pointP0. The pointP in the scene projects to pointsPL andPR in the two
eyes. In angular terms, the disparity between these isδθ. See text.
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Figure 24.18 FILES: figures/frame1.eps (Tue Nov 3 16:22:52 2009) figures/frame60.eps (Tue
Nov 3 16:22:53 2009) figures/frame120.eps (Tue Nov 3 16:22:53 2009) figures/frame150.eps (Tue
Nov 3 16:22:53 2009) figures/features.eps (Tue Nov 3 16:22:47 2009).(a) Four frames from a video
sequence in which the camera is moved and rotated relative tothe object. (b) The first frame of the
sequence, annotated with small boxes highlighting the features found by the feature detector. (Courtesy
of Carlo Tomasi.)
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(a) (b)

Figure 24.19 FILES: figures/topview-dots.eps (Tue Nov 3 16:23:56 2009) figures/topview-
real.eps (Tue Nov 3 16:23:57 2009).(a) Three-dimensional reconstruction of the locations of the
image features in Figure 24.18, shown from above. (b) The real house, taken from the same position.
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(a) (b)

Figure 24.20 FILES: figures/camp-test.eps (Tue Nov 3 16:22:32 2009) figures/chem-test.eps
(Tue Nov 3 16:22:32 2009).(a) A textured scene. Assuming that the real texture is uniform allows
recovery of the surface orientation. The computed surface orientation is indicated by overlaying a black
circle and pointer, transformed as if the circle were painted on the surface at that point. (b) Recovery of
shape from texture for a curved surface (white circle and pointer this time). Images courtesy of Jitendra
Malik and Ruth Rosenholtz (?).
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Figure 24.21 FILES: figures/isha.eps (Tue Nov 3 16:23:05 2009). An evocative line drawing.
(Courtesy of Isha Malik.)
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Figure 24.22 FILES: figures/c24f022-a.eps (Tue Nov 3 16:22:31 2009). In an image of people
standing on a ground plane, the people whose feet are closer to the horizon in the image must be farther
away (top drawing). This means they must look smaller in the image (left lower drawing). This means
that the size and location of real pedestrians in an image depend upon one another and on the location
of the horizon. To exploit this, we need to identify the ground plane, which is done using shape-from-
texture methods. From this information, and from some likely pedestrians, we can recover a horizon
as shown in the center image. On the right, acceptable pedestrian boxes given this geometric context.
Notice that pedestrians who are higher in the scene must be smaller. If they are not, then they are false
positives. Images from ? (?)c© IEEE.



297

Figure 24.23 FILES: figures/armslegs.eps (Tue Nov 3 16:22:24 2009).A pictorial structure model
evaluates a match between a set of image rectangles and a cardboard person (shown on the left) by scor-
ing the similarity in appearance between body segments and image segments and the spatial relations
between the image segments. Generally, a match is better if the image segments have about the right
appearance and are in about the right place with respect to one another. The appearance model uses av-
erage colors for hair, head, torso, and upper and lower arms and legs. The relevant relations are shown
as arrows. On the right, the best match for a particular image, obtained using dynamic programming.
The match is a fair estimate of the configuration of the body. Figure from ? (?) c© IEEE.
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Figure 24.24 FILES: figures/tracker.eps (Tue Nov 3 16:23:572009).We can track moving people
with a pictorial structure model by first obtaining an appearance model, then applying it. To obtain the
appearance model, we scan the image to find a lateral walking pose. The detector does not need to
be very accurate, but should produce few false positives. From the detector response, we can read off
pixels that lie on each body segment, and others that do not lie on that segment. This makes it possible
to build a discriminative model of the appearance of each body part, and these are tied together into a
pictorial structure model of the person being tracked. Finally, we can reliably track by detecting this
model in each frame. As the frames in the lower part of the image suggest, this procedure can track
complicated, fast-changing body configurations, despite degradation of the video signal due to motion
blur. Figure from ? (?)c© IEEE.
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Figure 24.25 FILES: figures/drinking-2.eps (Tue Nov 3 16:22:38 2009). Some complex human
actions produce consistent patterns of appearance and motion. For example, drinking involves move-
ments of the hand in front of the face. The first three images are correct detections of drinking; the
fourth is a false-positive (the cook is looking into the coffee pot, but not drinking from it). Figure from
? (?) c© IEEE.
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a b c

(a) (b) (c)

Figure 24.26 FILES: figures/liberty-new.eps (Tue Nov 3 16:23:06 2009).The state of the art in
multiple-view reconstruction is now highly advanced. Thisfigure outlines a system built by Michael
Goesele and colleagues from the University of Washington, TU Darmstadt, and Microsoft Research.
From a collection of pictures of a monument taken by a large community of users and posted on the
Internet (a), their system can determine the viewing directions for those pictures, shown by the small
black pyramids in (b) and a comprehensive 3D reconstructionshown in (c).
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Figure 24.27 FILES: figures/bottle-stereo.eps (Tue Nov 3 16:22:28 2009). Top view of a two-
camera vision system observing a bottle with a wall behind it.
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(a) (b)

Figure 25.1 FILES: figures/nachi.eps (Wed Nov 4 15:11:08 2009) figures/honda-asimo-
robot.eps (not found). (a) An industrial robotic manipulator for stacking bags on apallet. Image
courtesy of Nachi Robotic Systems. (b) Honda’s P3 and Asimo humanoid robots.
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(a) (b)

Figure 25.2 FILES: figures/predator.eps (Wed Nov 4 15:12:282009) figures/Sojourner.eps
(Wed Nov 4 15:12:23 2009).(a) Predator, an unmanned aerial vehicle (UAV) used by the U.S. Military.
Image courtesy of General Atomics Aeronautical Systems. (b) NASA’s Sojourner, a mobile robot that
explored the surface of Mars in July 1997.
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(a) (b)

Figure 25.3 FILES: figures/R317-SR4000-CW.eps (Wed Nov 4 15:16:09 2009) figures/wall-
chair2.eps (Wed Nov 4 15:16:06 2009).(a) Time of flight camera; image courtesy of Mesa Imaging
GmbH. (b) 3D range image obtained with this camera. The rangeimage makes it possible to detect
obstacles and objects in a robot’s vicinity.
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Figure 25.4 FILES: figures/stanford-arm.eps (Tue Nov 3 16:23:46 2009) figures/car-like.eps
(Tue Nov 3 16:22:32 2009).(a) The Stanford Manipulator, an early robot arm with five revolute joints
(R) and one prismatic joint (P), for a total of six degrees of freedom. (b) Motion of a nonholonomic
four-wheeled vehicle with front-wheel steering.
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(a) (b)

Figure 25.5 FILES: figures/RobotPlugInSkin.eps (Wed Nov 4 14:50:50 2009) figures/raibert-
1leg.eps (Tue Nov 3 16:23:27 2009).(a) Mobile manipulator plugging its charge cable into a wall
outlet. Image courtesy of Willow Garage,c© 2009. (b) One of Marc Raibert’s legged robots in motion.
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(a) (b)

Figure 25.6 FILES: figures/BDI-DKFI.eps (Tue Nov 3 16:22:142009). (a) Four-legged
dynamically-stable robot “Big Dog.” Image courtesy BostonDynamics, c© 2009. (b) 2009 RoboCup
Standard Platform League competition, showing the winningteam, B-Human, from the DFKI center
at the University of Bremen. Throughout the match, B-Human outscored their opponents 64:1. Their
success was built on probabilistic state estimation using particle filters and Kalman filters; on machine-
learning models for gait optimization; and on dynamic kicking moves. Image courtesy DFKI,c© 2009.
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Figure 25.7 FILES: figures/robotics-ddn.eps (Tue Nov 3 16:23:33 2009).Robot perception can
be viewed as temporal inference from sequences of actions and measurements, as illustrated by this
dynamic Bayes network.
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Figure 25.8 FILES: figures/robotics-pic2.eps (Tue Nov 3 16:23:34 2009) figures/range-scan-
model.eps (Tue Nov 3 16:23:27 2009).(a) A simplified kinematic model of a mobile robot. The
robot is shown as a circle with an interior line marking the forward direction. The statext consists of
the (xt, yt) position (shown implicitly) and the orientationθt. The new statext+1 is obtained by an
update in position ofvt∆t and in orientation ofωt∆t. Also shown is a landmark at(xi, yi) observed
at timet. (b) The range-scan sensor model. Two possible robot poses are shown for a given range scan
(z1, z2, z3, z4). It is much more likely that the pose on the left generated therange scan than the pose
on the right.
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Figure 25.10 FILES: figures/first.eps (Tue Nov 3 16:22:51 2009) figures/second.eps (Tue Nov
3 16:23:41 2009) figures/third.eps (Tue Nov 3 16:23:54 2009). Monte Carlo localization, a particle
filtering algorithm for mobile robot localization. (a) Initial, global uncertainty. (b) Approximately bi-
modal uncertainty after navigating in the (symmetric) corridor. (c) Unimodal uncertainty after entering
a room and finding it to be distinctive.
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Figure 25.11 FILES: figures/robotics-pic3.eps (Tue Nov 3 16:23:34 2009) figures/robotics-
pic4.eps (Tue Nov 3 16:23:34 2009).One-dimensional illustration of a linearized motion model: (a)
The functionf , and the projection of a meanµt and a covariance interval (based onΣt) into timet+1.
(b) The linearized version is the tangent off atµt. The projection of the meanµt is correct. However,
the projected covariancẽΣt+1 differs fromΣt+1.
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Figure 25.12 FILES: figures/robotics-pic6.eps (Tue Nov 3 16:23:35 2009). Example of local-
ization using the extended Kalman filter. The robot moves on astraight line. As it progresses, its
uncertainty increases gradually, as illustrated by the error ellipses. When it observes a landmark with
known position, the uncertainty is reduced.



314 Chapter 25. Robotics

(a) (b) (c)

Figure 25.13 FILES: figures/visimg1.eps (Wed Nov 4 15:06:582009) figures/visimg2.eps (Wed
Nov 4 15:07:03 2009) figures/visimg3.eps (Wed Nov 4 15:07:112009). Sequence of “drivable sur-
face” classifier results using adaptive vision. In (a) only the road is classified as drivable (striped area).
The V-shaped dark line shows where the vehicle is heading. In(b) the vehicle is commanded to drive off
the road, onto a grassy surface, and the classifier is beginning to classify some of the grass as drivable.
In (c) the vehicle has updated its model of drivable surface to correspond to grass as well as road.
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Figure 25.14 FILES: figures/armPlain.eps (Tue Nov 3 16:22:22 2009) fig-
ures/armPlainConfSpace.eps (Tue Nov 3 16:22:23 2009).(a) Workspace representation of a
robot arm with 2 DOFs. The workspace is a box with a flat obstacle hanging from the ceiling. (b)
Configuration space of the same robot. Only white regions in the space are configurations that are free
of collisions. The dot in this diagram corresponds to the configuration of the robot shown on the left.
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Figure 25.15 FILES: figures/armExampleWorkSpace.eps (TueNov 3 16:22:22 2009) fig-
ures/armExampleConfSpace.eps (Tue Nov 3 16:22:22 2009).Three robot configurations, shown
in workspace and configuration space.
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Figure 25.16 FILES: figures/armDPwithoutPotentialCoarse.eps (Wed Nov 4 15:51:42 2009)
figures/armDPwithoutPotentialWorkspaceCoarse.eps (TueNov 3 16:22:22 2009).(a) Value func-
tion and path found for a discrete grid cell approximation ofthe configuration space. (b) The same path
visualized in workspace coordinates. Notice how the robot bends its elbow to avoid a collision with the
vertical obstacle.
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start goal

(a) (b)

Figure 25.17 FILES: figures/armPotentialField.eps (Tue Nov 3 16:22:23 2009) fig-
ures/armDPwithPotential.eps (Tue Nov 3 16:22:21 2009).(a) A repelling potential field pushes the
robot away from obstacles. (b) Path found by simultaneouslyminimizing path length and the potential.
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(a) (b)

Figure 25.18 FILES: figures/armVoronoi.eps (Tue Nov 3 16:22:23 2009) fig-
ures/armRoadmap.eps (Tue Nov 3 16:22:23 2009).(a) The Voronoi graph is the set of points
equidistant to two or more obstacles in configuration space.(b) A probabilistic roadmap, composed of
400 randomly chosen points in free space.
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Figure 25.19 FILES: figures/peg-in-hole.eps (Tue Nov 3 16:23:17 2009). A two-dimensional
environment, velocity uncertainty cone, and envelope of possible robot motions. The intended velocity
is v, but with uncertainty the actual velocity could be anywherein Cv, resulting in a final configuration
somewhere in the motion envelope, which means we wouldn’t know if we hit the hole or not.
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Figure 25.20 FILES: figures/peg-in-hole-step1.eps (Tue Nov 3 16:23:16 2009).The first motion
command and the resulting envelope of possible robot motions. No matter what the error, we know the
final configuration will be to the left of the hole.
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Figure 25.21 FILES: figures/peg-in-hole-step2.eps (Tue Nov 3 16:23:16 2009).The second mo-
tion command and the envelope of possible motions. Even witherror, we will eventually get into the
hole.
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(a) (b) (c)

Figure 25.22 FILES: figures/armControlP1.0.eps (Tue Nov 3 16:22:21 2009) fig-
ures/armControlP0.1.eps (Tue Nov 3 16:22:21 2009) figures/armControlP0.3D0.8.eps (Tue
Nov 3 16:22:21 2009). Robot arm control using (a) proportional control with gain factor 1.0, (b)
proportional control with gain factor 0.1, and (c) PD (proportional derivative) control with gain factors
0.3 for the proportional component and 0.8 for the differential component. In all cases the robot arm
tries to follow the path shown in gray.
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Figure 25.23 FILES: figures/armSimplePotentialAlt.eps (Tue Nov 3 16:22:23 2009) fig-
ures/armSimplePotential.eps (Tue Nov 3 16:22:23 2009).Potential field control. The robot ascends
a potential field composed of repelling forces asserted fromthe obstacles and an attracting force that
corresponds to the goal configuration. (a) Successful path.(b) Local optimum.
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Figure 25.24 FILES: figures/genghis.eps (Tue Nov 3 13:34:492009) figures/robotics-pic5.eps
(Tue Nov 3 16:23:34 2009).(a) Genghis, a hexapod robot. (b) An augmented finite state machine
(AFSM) for the control of a single leg. Notice that this AFSM reacts to sensor feedback: if a leg is
stuck during the forward swinging phase, it will be lifted increasingly higher.
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Figure 25.25 FILES: figures/flip-mosaic.eps (not found).Multiple exposures of an RC helicopter
executing a flip based on a policy learned with reinforcementlearning. Images courtesy of Andrew Ng,
Stanford University.



327

Touareg interface 

Laser mapper 

Wireless E-Stop 

Top level control 

Laser 2 interface 

Laser 3 interface 

Laser 4 interface 

Laser 1 interface 

Laser 5 interface 

Camera interface 

Radar interface Radar mapper 

Vision mapper 

UKF Pose estimation 

Wheel velocity 

GPS position 

GPS compass 

IMU interface 
Surface assessment 

Health monitor 

Road finder 

Touch screen UI 

Throttle/brake control 

Steering control 

Path planner 

laser map 

vehicle state (pose, velocity) 

velocity limit 

map 

vision map 

vehicle 
state 

obstacle list 

trajectory 

road center 

RDDF database 

driving mode 

pause/disable command 

Power server interface 

clocks 

emergency stop 

power on/off 

Linux processes start/stop heart beats 

corridor 

    SENSOR INTERFACE                PERCEPTION                  PLANNING&CONTROL        USER INTERFACE 

VEHICLE 

INTERFACE 

RDDF corridor (smoothed and original) 

Process controller 

GLOBAL 

SERVICES 

health status 

data 

Data logger File system 

Communication requests 

vehicle state (pose, velocity) 

Brake/steering 

Communication channels 

Inter-process communication (IPC) server Time server 

Figure 25.26 FILES: figures/stanley-processes.eps (Wed Nov 4 11:17:26 2009).Software archi-
tecture of a robot car. This software implements a data pipeline, in which all modules process data
simultaneously.
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(a) (b)

Figure 25.27 FILES: figures/helpmate.eps (Tue Nov 3 15:26:49 2009) fig-
ures/DenvierStation.eps (Tue Nov 3 16:22:14 2009).(a) The Helpmate robot transports food
and other medical items in dozens of hospitals worldwide. (b) Kiva robots are part of a material-
handling system for moving shelves in fulfillment centers. Image courtesy of Kiva Systems.



329

(a) (b)

Figure 25.28 FILES: figures/race12.eps (Wed Nov 4 15:18:14 2009) figures/munich-
ORsmall.eps (not found).(a) Robotic car BOSS, which won the DARPA Urban Challenge. Courtesy
of Carnegie Mellon University. (b) Surgical robots in the operating room. Image courtesy of da Vinci
Surgical Systems.
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(a) (b)

Figure 25.29 FILES: figures/mine-robot.eps (Tue Nov 3 16:23:11 2009) figures/mine-data.eps
(Tue Nov 3 16:23:09 2009).(a) A robot mapping an abandoned coal mine. (b) A 3D map of the mine
acquired by the robot.
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(a) (b)

Figure 25.30 FILES: figures/roomba1.eps (Wed Nov 4 15:22:232009) figures/icra-cordless-
phone-gray3.eps (not found). (a) Roomba, the world’s best-selling mobile robot, vacuumsfloors.
Image courtesy of iRobot,c© 2009. (b) Robotic hand modeled after human hand. Image courtesy of
University of Washington and Carnegie Mellon University.
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A A
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Starting configuration <−0.5, 7> Ending configuration <−0.5, −7> 

Figure 25.31 FILES: figures/figRobot2.eps (Tue Nov 3 16:22:47 2009).A Robot manipulator in
two of its possible configurations.
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(a) (b) (c)

(d) (e) (f)

Figure 25.32 FILES: figures/exerciseRobot1.eps (Tue Nov 3 16:22:42 2009) fig-
ures/exerciseRobot3.eps (Tue Nov 3 16:22:43 2009) figures/exerciseRobot6.eps (Tue Nov 3
16:22:44 2009) figures/exerciseConf2.eps (Tue Nov 3 16:22:41 2009) figures/exerciseConf4.eps
(Tue Nov 3 16:22:42 2009) figures/exerciseConf5.eps (Tue Nov 3 16:22:42 2009).Diagrams for
Exercise??.
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robot

sensor
range

goal

Figure 25.33 FILES: figures/robotics-pic7.eps (Tue Nov 3 16:23:35 2009).Simplified robot in a
maze. See Exercise??.
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Figure 27.1 FILES: figures/utility-based-agent.eps (Tue Nov 3 16:23:59 2009).A model-based,
utility-based agent, as first presented in Figure 2.10.
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Figure 27.2 FILES: figures/compilation.eps (Tue Nov 3 16:22:34 2009). Compilation serves to
convert deliberative decision making into more efficient, reflexive mechanisms.
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