A. 3 Probability Distributions

A probability is a measure over a set of events that satisfies three axioms:

1. The measure of each event is between 0 and 1 . We write this as $0 \leq P\left(X=x_{i}\right) \leq 1$, where X is a random variable representing an event and x_{i} are the possible values of X. In general, random variables are denoted by uppercase letters and their values by lowercase letters.
2. The measure of the whole set is 1 ; that is, $\sum_{i=1}^{n} P\left(X=x_{i}\right)=1$.
3. The probability of a union of disjoint events is the sum of the probabilities of the individual events; that is, $P\left(X=x_{1} \vee X=x_{2}\right)=P\left(X=x_{1}\right)+P\left(X=x_{2}\right)$, in the case where x_{1} and x_{2} are disjoint.
A probabilistic model consists of a sample space of mutually exclusive possible outcomes, together with a probability measure for each outcome. For example, in a model of the weather tomorrow, the outcomes might be sun, cloud, rain, and snow. A subset of these outcomes constitutes an event. For example, the event of precipitation is the subset consisting of $\{$ rain, snow $\}$.

We use $\mathbf{P}(X)$ to denote the vector of values $\left\langle P\left(X=x_{1}\right), \ldots, P\left(X=x_{n}\right)\right\rangle$. We also use $P\left(x_{i}\right)$ as an abbreviation for $P\left(X=x_{i}\right)$ and $\sum_{x} P(x)$ for $\sum_{i=1}^{n} P\left(X=x_{i}\right)$.

The conditional probability $P(B \mid A)$ is defined as $P(B \cap A) / P(A)$. A and B are conditionally independent if $P(B \mid A)=P(B)$ (or equivalently, $P(A \mid B)=P(A)$).

For continuous variables, there are an infinite number of values, and unless there are point spikes, the probability of any one exact value is 0 . So it makes more sense to talk about the value being within a range. We do that with a probability density function, which has a slightly different meaning from the discrete probability function. Since $P(X=x)$-the probability that X has the value x exactly-is zero, we instead measure how likely it is that X falls into an interval around x, compared to the width of the interval, and take the limit as the interval width goes to zero:

$$
P(x)=\lim _{d x \rightarrow 0} P(x \leq X \leq x+d x) / d x
$$

The density function must be nonnegative for all x and must have

$$
\int_{-\infty}^{\infty} P(x) d x=1 .
$$

We can also define the cumulative distribution $F_{X}(x)$, which is the probability of a random variable being less than x :

$$
F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} P(u) d u
$$

Note that the probability density function has units, whereas the discrete probability function is unitless. For example, if values of X are measured in seconds, then the density is measured in Hz (i.e., $1 / \mathrm{sec}$). If values of \mathbf{X} are points in three-dimensional space measured in meters, then density is measured in $1 / \mathrm{m}^{3}$.

One of the most important probability distributions is the Gaussian distribution, also
Cumulative

