
Section 9.1 Propositional vs. First-Order Inference 281

Similarly, the rule of Existential Instantiation replaces an existentially quantified vari- Existential
Instantiation

able with a single new constant symbol. The formal statement is as follows: for any sentence

α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base,

∃v α

SUBST({v/k},α)
.

For example, from the sentence

∃x Crown(x)∧OnHead(x,John)

we can infer the sentence

Crown(C1)∧OnHead(C1,John)

as long as C1 does not appear elsewhere in the knowledge base. Basically, the existential

sentence says there is some object satisfying a condition, and applying the existential instan-

tiation rule just gives a name to that object. Of course, that name must not already belong

to another object. Mathematics provides a nice example: suppose we discover that there is a

number that is a little bigger than 2.71828 and that satisfies the equation d(xy)/dy=xy for x.

We can give this number the name e, but it would be a mistake to give it the name of an

existing object, such as π. In logic, the new name is called a Skolem constant. Skolem constant

Whereas Universal Instantiation can be applied many times to the same axiom to pro-

duce many different consequences, Existential Instantiation need only be applied once, and

then the existentially quantified sentence can be discarded. For example, we no longer need

∃x Kill(x,Victim) once we have added the sentence Kill(Murderer,Victim).

9.1.1 Reduction to propositional inference

We now show how to convert any first-order knowledge base into a propositional knowledge

base. The first idea is that, just as an existentially quantified sentence can be replaced by

one instantiation, a universally quantified sentence can be replaced by the set of all possible

instantiations. For example, suppose our knowledge base contains just the sentences

∀x King(x)∧Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard,John) .

(9.1)

and that the only objects are John and Richard. We apply UI to the first sentence using all

possible substitutions, {x/John} and {x/Richard}. We obtain

King(John)∧Greedy(John) ⇒ Evil(John)
King(Richard)∧Greedy(Richard) ⇒ Evil(Richard) .

Next replace ground atomic sentences, such as King(John), with proposition symbols, such

as JohnIsKing. Finally, apply any of the complete propositional algorithms in Chapter 7 to

obtain conclusions such as JohnIsEvil, which is equivalent to Evil(John).
This technique of propositionalization can be made completely general, as we show Propositionalization

in Section 9.5. However, there is a problem: when the knowledge base includes a func-

tion symbol, the set of possible ground-term substitutions is infinite! For example, if the

knowledge base mentions the Father function, then infinitely many nested terms such as

Father(Father(Father(John))) can be constructed.


