
366 Chapter 11 Automated Planning

The action schemas are straightforward, with one exception: preconditions and effects now

may contain variables that are not part of the action’s variable list. That is, Paint(x,can)
does not mention the variable c, representing the color of the paint in the can. In the fully

observable case, this is not allowed—we would have to name the action Paint(x,can,c). But

in the partially observable case, we might or might not know what color is in the can.

To solve a partially observable problem, the agent will have to reason about the percepts

it will obtain when it is executing the plan. The percept will be supplied by the agent’s

sensors when it is actually acting, but when it is planning it will need a model of its sensors.

In Chapter 4, this model was given by a function, PERCEPT(s). For planning, we augment

PDDL with a new type of schema, the percept schema:Percept schema

Percept(Color(x,c),
PRECOND:Object(x)∧ InView(x))

Percept(Color(can,c),
PRECOND:Can(can)∧ InView(can)∧Open(can))

The first schema says that whenever an object is in view, the agent will perceive the color

of the object (that is, for the object x, the agent will learn the truth value of Color(x,c) for

all c). The second schema says that if an open can is in view, then the agent perceives the

color of the paint in the can. Because there are no exogenous events in this world, the color

of an object will remain the same, even if it is not being perceived, until the agent performs

an action to change the object’s color. Of course, the agent will need an action that causes

objects (one at a time) to come into view:

Action(LookAt(x),
PRECOND:InView(y)∧ (x "= y)
EFFECT:InView(x)∧¬InView(y))

For a fully observable environment, we would have a Percept schema with no preconditions

for each fluent. A sensorless agent, on the other hand, has no Percept schemas at all. Note

that even a sensorless agent can solve the painting problem. One solution is to open any can

of paint and apply it to both chair and table, thus coercing them to be the same color (even

though the agent doesn’t know what the color is).

A contingent planning agent with sensors can generate a better plan. First, look at the

table and chair to obtain their colors; if they are already the same then the plan is done. If

not, look at the paint cans; if the paint in a can is the same color as one piece of furniture,

then apply that paint to the other piece. Otherwise, paint both pieces with any color.

Finally, an online planning agent might generate a contingent plan with fewer branches

at first—perhaps ignoring the possibility that no cans match any of the furniture—and deal

with problems when they arise by replanning. It could also deal with incorrectness of its

action schemas. Whereas a contingent planner simply assumes that the effects of an action

always succeed—that painting the chair does the job—a replanning agent would check the

result and make an additional plan to fix any unexpected failure, such as an unpainted area or

the original color showing through.

In the real world, agents use a combination of approaches. Car manufacturers sell spare

tires and air bags, which are physical embodiments of contingent plan branches designed

to handle punctures or crashes. On the other hand, most car drivers never consider these

possibilities; when a problem arises they respond as replanning agents. In general, agents


