It is important to understand that $P($ cavity $)=0.2$ is still valid after toothache is observed; it just isn't especially useful. When making decisions, an agent needs to condition on all the evidence it has observed. It is also important to understand the difference between conditioning and logical implication. The assertion that P (cavity \mid toothache $)=0.6$ does not mean "Whenever toothache is true, conclude that cavity is true with probability 0.6 " rather it means "Whenever toothache is true and we have no further information, conclude that cavity is true with probability 0.6 ." The extra condition is important; for example, if we had the further information that the dentist found no cavities, we definitely would not want to conclude that cavity is true with probability 0.6 ; instead we need to use $P($ cavity \mid toothache $\wedge \neg$ cavity $)=0$.

Mathematically speaking, conditional probabilities are defined in terms of unconditional probabilities as follows: for any propositions a and b, we have

$$
\begin{equation*}
P(a \mid b)=\frac{P(a \wedge b)}{P(b)} \tag{12.3}
\end{equation*}
$$

which holds whenever $P(b)>0$. For example,

$$
P\left(\text { doubles } \mid \text { Die }_{1}=5\right)=\frac{P\left(\text { doubles } \wedge \text { Die }_{1}=5\right)}{P\left(\text { Die }_{1}=5\right)} .
$$

The definition makes sense if you remember that observing b rules out all those possible worlds where b is false, leaving a set whose total probability is just $P(b)$. Within that set, the worlds where a is true must satisfy $a \wedge b$ and constitute a fraction $P(a \wedge b) / P(b)$.

The definition of conditional probability, Equation (12.3), can be written in a different form called the product rule:

$$
\begin{equation*}
P(a \wedge b)=P(a \mid b) P(b) \tag{12.4}
\end{equation*}
$$

The product rule is perhaps easier to remember: it comes from the fact that for a and b to be true, we need b to be true, and we also need a to be true given b.

12.2.2 The language of propositions in probability assertions

In this chapter and the next, propositions describing sets of possible worlds are usually written in a notation that combines elements of propositional logic and constraint satisfaction notation. In the terminology of Section 2.4.7, it is a factored representation, in which a possible world is represented by a set of variable/value pairs. A more expressive structured representation is also possible, as shown in Chapter 15.

Variables in probability theory are called random variables, and their names begin with an uppercase letter. Thus, in the dice example, Total and Die_{1} are random variables. Every random variable is a function that maps from the domain of possible worlds Ω to some range - the set of possible values it can take on. The range of Total for two dice is the set $\{2, \ldots, 12\}$ and the range of Die_{1} is $\{1, \ldots, 6\}$. Names for values are always lowercase, so we might write $\sum_{x} P(X=x)$ to sum over the values of X. A Boolean random variable has the range $\{$ true,false $\}$. For example, the proposition that doubles are rolled can be written as Doubles $=$ true. (An alternative range for Boolean variables is the set $\{0,1\}$, in which case the variable is said to have a Bernoulli distribution.) By convention, propositions of the form $A=$ true are abbreviated simply as a, while $A=$ false is abbreviated as $\neg a$. (The uses of doubles, cavity, and toothache in the preceding section are abbreviations of this kind.)

Ranges can be sets of arbitrary tokens. We might choose the range of Age to be the set $\{$ juvenile, teen, adult $\}$ and the range of Weather might be $\{$ sun, rain, cloud, snow $\}$. When no

