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It is important to understand that P(cavity)=0.2 is still valid after toothache is observed;
it just isn’t especially useful. When making decisions, an agent needs to condition on all the
evidence it has observed. It is also important to understand the difference between condi-
tioning and logical implication. The assertion that P(cavity | toothache)=0.6 does not mean
“Whenever toothache is true, conclude that cavity is true with probability 0.6” rather it means
“Whenever toothache is true and we have no further information, conclude that cavity is true
with probability 0.6.” The extra condition is important; for example, if we had the further
information that the dentist found no cavities, we definitely would not want to conclude that
cavity is true with probability 0.6; instead we need to use P(cavity|toothache∧¬cavity)=0.

Mathematically speaking, conditional probabilities are defined in terms of unconditional
probabilities as follows: for any propositions a and b, we have

P(a |b) =
P(a∧b)

P(b)
, (12.3)

which holds whenever P(b)> 0. For example,

P(doubles |Die1=5) =
P(doubles∧Die1=5)

P(Die1=5)
.

The definition makes sense if you remember that observing b rules out all those possible
worlds where b is false, leaving a set whose total probability is just P(b). Within that set, the
worlds where a is true must satisfy a∧b and constitute a fraction P(a∧b)/P(b).

The definition of conditional probability, Equation (12.3), can be written in a different
form called the product rule:Product rule

P(a∧b) = P(a |b)P(b) . (12.4)

The product rule is perhaps easier to remember: it comes from the fact that for a and b to be
true, we need b to be true, and we also need a to be true given b.

12.2.2 The language of propositions in probability assertions

In this chapter and the next, propositions describing sets of possible worlds are usually writ-
ten in a notation that combines elements of propositional logic and constraint satisfaction
notation. In the terminology of Section 2.4.7, it is a factored representation, in which a
possible world is represented by a set of variable/value pairs. A more expressive structured

representation is also possible, as shown in Chapter 15.
Variables in probability theory are called random variables, and their names begin withRandom variable

an uppercase letter. Thus, in the dice example, Total and Die1 are random variables. Ev-
ery random variable is a function that maps from the domain of possible worlds Ω to some
range—the set of possible values it can take on. The range of Total for two dice is the setRange

{2, . . . ,12} and the range of Die1 is {1, . . . ,6}. Names for values are always lowercase, so
we might write ∑x P(X =x) to sum over the values of X . A Boolean random variable has
the range {true, false}. For example, the proposition that doubles are rolled can be written
as Doubles= true. (An alternative range for Boolean variables is the set {0,1}, in which
case the variable is said to have a Bernoulli distribution.) By convention, propositions of theBernoulli

form A= true are abbreviated simply as a, while A= false is abbreviated as ¬a. (The uses of
doubles, cavity, and toothache in the preceding section are abbreviations of this kind.)

Ranges can be sets of arbitrary tokens. We might choose the range of Age to be the set
{juvenile, teen,adult} and the range of Weather might be {sun,rain,cloud,snow}. When no


