Bayes nets defines each entry in the joint distribution as follows:

\[P(x_1, \ldots, x_n) = \prod_{i=1}^{n} \theta(x_i | \text{parents}(X_i)), \tag{13.1} \]

where \(\text{parents}(X_i) \) denotes the values of \(\text{Parents}(X_i) \) that appear in \(x_1, \ldots, x_n \). Thus, each entry in the joint distribution is represented by the product of the appropriate elements of the local conditional distributions in the Bayes net. To illustrate this, we can calculate the probability that the alarm has sounded, but neither a burglary nor an earthquake has occurred, and both John and Mary call. We simply multiply the relevant entries from the local conditional distributions (abbreviating the variable names):

\[P(j, m, a, \neg b, \neg e) = P(j | a)P(m | a)P(a | \neg b \land \neg e)P(\neg b)P(\neg e) \]
\[= 0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998 = 0.000628. \]

Section 12.3 explained that the full joint distribution can be used to answer any query about the domain. If a Bayes net is a representation of the joint distribution, then it too can be used to answer any query, by summing all the relevant joint probability values, each calculated by multiplying probabilities from the local conditional distributions. Section 13.3 explains this in more detail, but also describes methods that are much more efficient.

So far, we have glossed over one important point: what is the meaning of the numbers that go into the local conditional distributions \(\theta(x_i | \text{parents}(X_i)) \)? It turns out that from Equation (13.1) we can prove that the parameters \(\theta(x_i | \text{parents}(X_i)) \) are exactly the conditional probabilities \(P(x_i | \text{parents}(X_i)) \) implied by the joint distribution. Remember that the conditional probabilities can be computed from the joint distribution as follows:

\[P(x_i | \text{parents}(X_i)) \equiv \frac{P(x_i, \text{parents}(X_i))}{P(\text{parents}(X_i))} \]
\[= \frac{\sum_y P(x_i, \text{parents}(X_i), y)}{\sum_{x_i,s} P(x_i, \text{parents}(X_i), y)} \]

where \(y \) represents the values of all variables other than \(X_i \) and its parents. From this last line one can prove that \(P(x_i | \text{parents}(X_i)) = \theta(x_i | \text{parents}(X_i)) \) (Exercise \textsc{13.cpfe}). Hence, we can rewrite Equation (13.1) as

\[P(x_1, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)). \tag{13.2} \]

This means that when one estimates values for the local conditional distributions, they need to be the actual conditional probabilities for the variable given its parents. So, for example, when we specify \(\theta(\text{JohnCalls} = \text{true} | \text{Alarm} = \text{true}) = 0.90 \), it should be the case that about 90% of the time when the alarm sounds, John calls. The fact that each parameter of the network has a precise meaning in terms of only a small set of variables is crucially important for robustness and ease of specification of the models.

A method for constructing Bayesian networks

Equation (13.2) defines what a given Bayes net means. The next step is to explain how to construct a Bayesian network in such a way that the resulting joint distribution is a good representation of a given domain. We will now show that Equation (13.2) implies certain conditional independence relationships that can be used to guide the knowledge engineer in