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always reports a posterior probability for the query of 〈1.0,0.0〉; if it starts in [false, false] it

always reports a posterior probability for the query of 〈0.0,1.0〉.
Gibbs sampling fails in this case because the deterministic relationship between Cloudy

and Rain breaks the property of ergodicity that is required for convergence. If, however,

we make the relationship nearly deterministic, then convergence is restored, but happens

arbitrarily slowly. There are several fixes that help MCMC algorithms mix more quickly.

One is block sampling: sampling multiple variables simultaneously. In this case, we could Block sampling

sample Cloudy and Rain jointly, conditioned on their combined Markov blanket. Another is

to generate next states more intelligently, as we will see in the next section.

Metropolis–Hastings sampling

The Metropolis–Hastings or MH sampling method is perhaps the most broadly applicable

MCMC algorithm. Like Gibbs sampling, MH is designed to generate samples x (eventually)

according to target probabilities π(x); in the case of inference in Bayesian networks, we want

π(x)=P(x |e). Like simulated annealing (page 115), MH has two stages in each iteration of

the sampling process:

1. Sample a new state x′ from a proposal distribution q(x′ |x), given the current state x. Proposal distribution

2. Probabilistically accept or reject x′ according to the acceptance probability Acceptance
probability

a(x′ |x) = min

(

1,
π(x′)q(x |x′)
π(x)q(x′ |x)

)

.

If the proposal is rejected, the state remains at x.

The transition kernel for MH consists of this two-step process. Note that if the proposal is

rejected, the chain stays in the same state.

The proposal distribution is responsible, as its name suggests, for proposing a next state

x′. For example, q(x′ |x) could be defined as follows:

• With probability 0.95, perform a Gibbs sampling step to generate x′.

• Otherwise, generate x′ by running the WEIGHTED-SAMPLE algorithm from page 440.

This proposal distribution causes MH to do about 20 steps of Gibbs sampling then “restarts”

the process from a new state (assuming it is accepted) that is generated from scratch. By this

stratagem, it gets around the problem of Gibbs sampling getting stuck in one part of the state

space and being unable to reach the other parts.

You might ask how on Earth we know that MH with such a weird proposal actually con-

verges to the right answer. The remarkable thing about MH is that convergence to the correct !
stationary distribution is guaranteed for any proposal distribution, provided the resulting

transition kernel is ergodic.

This property follows from the way the acceptance probability is defined. As with Gibbs

sampling, the self-loop with x=x′ automatically satisfies detailed balance, so we focus on

the case where x $= x′. This can occur only if the proposal is accepted. The probability of

such a transition occurring is

k(x→ x′) = q(x′ |x)a(x′ |x) .
As with Gibbs sampling, proving detailed balance means showing that the flow from x to

x′, π(x)k(x→ x′), matches the flow from x′ to x, π(x′)k(x′ → x). After plugging in the


