a consistent construction of the network to represent the joint distribution function. This was demonstrated in Figure 13.3, where changing the node ordering produced networks that were bushier and a lot less natural than the original network in Figure 13.2 but enabled us, nevertheless, to represent the same distribution on all variables.

This section describes **causal networks**, a restricted class of Bayesian networks that forbids all but causally compatible orderings. We will explore how to construct such networks, what is gained by such construction, and how to leverage this gain in decision-making tasks.

Consider the simplest Bayesian network imaginable, a single arrow, $\text{Fire} \rightarrow \text{Smoke}$. It tells us that variables Fire and Smoke may be dependent, so one needs to specify the prior $P(\text{Fire})$ and the conditional probability $P(\text{Smoke} \mid \text{Fire})$ in order to specify the joint distribution $P(\text{Fire}, \text{Smoke})$. However, this distribution can be represented equally well by the reverse arrow $\text{Fire} \leftarrow \text{Smoke}$, using the appropriate $P(\text{Smoke})$ and $P(\text{Fire} \mid \text{Smoke})$ computed from Bayes’ rule. The idea that these two networks are equivalent, hence convey the same information, evokes discomfort and even resistance in most people. How could they convey the same information when we know that Fire causes Smoke and not the other way around?

In other words, we know from our experience and scientific understanding that clearing the smoke would not stop the fire and extinguishing the fire will stop the smoke. We expect therefore to represent this asymmetry through the directionality of the arrow between them. But if arrow reversal only makes things equivalent, how can we hope to represent this important information formally?

Causal Bayesian networks, sometimes called Causal Diagrams, were devised to permit us to represent causal asymmetries and to leverage the asymmetries towards reasoning with causal information. The idea is to decide on arrow directionality by considerations that go beyond probabilistic dependence and invoke a totally different type of judgment. Instead of asking an expert whether Smoke and Fire are probabilistically dependent, as we do in ordinary Bayesian networks, we now ask which responds to which, Smoke to Fire or Fire to Smoke?

This may sound a bit mystical, but it can be made precise through the notion of “assignment,” similar to the assignment operator in programming languages. If nature assigns a value to Smoke on the basis of what nature learns about Fire, we draw an arrow from Fire to Smoke. More importantly, if we judge that nature assigns Fire a truth value that depends on other variables, not Smoke, we refrain from drawing the arrow $\text{Fire} \leftarrow \text{Smoke}$. In other words, the value x_i of each variable X_i is determined by an equation $x_i = f_i(\text{OtherVariables})$, and an arrow $X_j \rightarrow X_i$ is drawn if and only if X_j is one of the arguments of f_i.

The equation $x_i = f_i(\cdot)$ is called a **structural equation**, because it describes a stable mechanism in nature which, unlike the probabilities that quantify a Bayesian network, remains invariant to measurements and local changes in the environment.

To appreciate this stability to local changes, consider Figure 13.23(a), which depicts a slightly modified version of the lawn sprinkler story of Figure 13.15. To represent a disabled sprinkler, for example, we simply delete from the network all links incident to the Sprinkler node. To represent a lawn covered by a tent, we simply delete the arrow $\text{Rain} \rightarrow \text{WetGrass}$. Any local reconfiguration of the mechanisms in the environment can thus be translated, with only minor modification, into an isomorphic reconfiguration of the network topology. A much more elaborate transformation would be required had the network been constructed contrary to causal ordering. This local stability is particularly important for representing actions or interventions, our next topic of discussion.