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Since the mid-1990s, MCMC has become the workhorse of Bayesian statistics and statis-

tical computation in many other disciplines including physics and biology. The Handbook of

Markov Chain Monte Carlo (Brooks et al., 2011) covers many aspects of this literature. The

BUGS package (Gilks et al., 1994) was an early and influential system for Bayes net model-

ing and inference using Gibbs sampling. STAN (named after Stanislaw Ulam, an originator

of Monte Carlo methods in physics) is a more recent system that uses Hamiltonian Monte

Carlo inference (Carpenter et al., 2017).

There are two very important families of approximation methods that we did not cover

in the chapter. The first is the family of variational approximation methods, which can be

used to simplify complex calculations of all kinds. The basic idea is to propose a reduced

version of the original problem that is simple to work with, but that resembles the original

problem as closely as possible. The reduced problem is described by some variational pa-

rameters λ that are adjusted to minimize a distance function D between the original and

the reduced problem, often by solving the system of equations ∂D/∂λ=0. In many cases,

strict upper and lower bounds can be obtained. Variational methods have long been used in

statistics (Rustagi, 1976). In statistical physics, the mean-field method is a particular varia-

tional approximation in which the individual variables making up the model are assumed to

be completely independent.

This idea was applied to solve large undirected Markov networks (Peterson and Ander-

son, 1987; Parisi, 1988). Saul et al. (1996) developed the mathematical foundations for

applying variational methods to Bayesian networks and obtained accurate lower-bound ap-

proximations for sigmoid networks with the use of mean-field methods. Jaakkola and Jordan

(1996) extended the methodology to obtain both lower and upper bounds. Since these early

papers, variational methods have been applied to many specific families of models. The re-

markable paper by Wainwright and Jordan (2008) provides a unifying theoretical analysis of

the literature on variational methods.

A second important family of approximation algorithms is based on Pearl’s polytree

message-passing algorithm (1982a). This algorithm can be applied to general “loopy” net-

works, as suggested by Pearl (1988). The results might be incorrect, or the algorithm might

fail to terminate, but in many cases, the values obtained are close to the true values. Little

attention was paid to this so-called loopy belief propagation approach until McEliece et al.Loopy belief
propagation

(1998) observed that it is exactly the computation performed by the turbo decoding algo-Turbo decoding

rithm (Berrou et al., 1993), which provided a major breakthrough in the design of efficient

error-correcting codes.

The implication of these observations is if loopy BP is both fast and accurate on the very

large and very highly connected networks used for decoding, it might therefore be useful

more generally. Theoretical support for these findings, including convergence proofs for

some special cases, was provided by Weiss (2000b), Weiss and Freeman (2001) and Yedidia

et al. (2005), drawing on connections to ideas from statistical physics.

Theories of causal inference going beyond randomized controlled trials were proposed

by Rubin (1974) and Robins (1986), but these ideas remained both obscure and controver-

sial until Judea Pearl developed and presented a fully articulated theory of causality based

on causal networks (Pearl, 2000). Peters et al. (2017) further develop the theory, with an

emphasis on learning. A more recent work, The Book of Why (Pearl and McKenzie, 2018),

provides a less mathematical but more readable and wide-ranging introduction.


