
586 Chapter 17 Making Complex Decisions

Robbins (1985) shows that, for the undiscounted case, no possible algorithm can have regret
that grows more slowly than O(logN). Several different choices of g lead to a UCB policy
that matches this growth; for example, we can use g(N)=(2log(1+N log2 N))1/2.

A second method, Thompson sampling (Thompson, 1933), chooses an arm randomlyThompson sampling

according to the probability that the arm is in fact optimal, given the samples so far. Suppose
that Pi(µi) is the current probability distribution for the true value of arm Mi. Then a simple
way to implement Thompson sampling is to generate one sample from each Pi and then pick
the best sample. This algorithm also has a regret that grows as O(logN).

17.3.4 Non-indexable variants

Bandit problems were motivated in part by the task of testing new medical treatments on
seriously ill patients. For this task, the goal of maximizing the total number of successes over
time clearly makes sense: each successful test means a life saved, each failure a life lost.

If we change the assumptions slightly, however, a different problem emerges. Suppose
that, instead of determining the best medical treatment for each new human patient, we are
instead testing different drugs on samples of bacteria with the goal of deciding which drug is
best. We will then put that drug into production and forgo the others. In this scenario there is
no additional cost if the bacteria dies—there is a fixed cost for each test, but we don’t have to
minimize test failures; rather we are just trying to make a good decision as fast as possible.

The task of choosing the best option under these conditions is called a selection problem.Selection problem

Selection problems are ubiquitous in industrial and personnel contexts. One often must decide
which supplier to use for a process; or which candidate employees to hire. Selection problems
are superficially similar to the bandit problem but have different mathematical properties. In
particular, no index function exists for selection problems. The proof of this fact requires!
showing any scenario where the optimal policy switches its preferences for two arms M1 and
M2 when a third arm M3 is added (see Exercise 17.SELC).

Chapter 5 introduced the concept of metalevel decision problems such as deciding what
computations to make during a game-tree search prior to making a move. A metalevel de-
cision of this kind is also a selection problem rather than a bandit problem. Clearly, a node
expansion or evaluation costs the same amount of time whether it produces a high or a low
output value. It is perhaps surprising, then, that the Monte Carlo tree search algorithm (see
page 163) has been so successful, given that it tries to solve selection problems with the UCB
heuristic, which was designed for bandit problems. Generally speaking, one expects optimal
bandit algorithms to explore much less than optimal selection algorithms, because the bandit
algorithm assumes that a failed trial costs real money.

An important generalization of the bandit process is the bandit superprocess or BSP, inBandit superprocess

BSP which each arm is a full Markov decision process in its own right, rather than being a Markov
reward process with only one possible action. All other properties remain the same: the arms
are independent, only one (or a bounded number) can be worked on at a time, and there is a
single discount factor.

Examples of BSPs include daily life, where one can attend to one task at a time, even
though several tasks may need attention; project management with multiple projects; teaching
with multiple pupils needing individual guidance; and so on. The ordinary term for this is
multitasking. It is so ubiquitous as to be barely noticeable: when formulating a real-worldMultitasking

decision problem, decision analysts rarely ask if their client has other, unrelated problems.


