Section 17.5 Algorithms for Solving POMDPs

function POMDP-VALUE-ITERATION(pomdp, €) returns a utility function
inputs: pomdp, a POMDP with states S, actions A(s), transition model P(s'|s,a),
sensor model P(e|s), rewards R(s,a,s’), discount
€, the maximum error allowed in the utility of any state
local variables: U, U, sets of plans p with associated utility vectors o »

U’ < a set containing all one-step plans [a], with aj,(s)= Ly P(s'|s,a) R(s,a,s’)
repeat
U+U
U’ < the set of all plans consisting of an action and, for each possible next percept,
a plan in U with utility vectors computed according to Equation (17.18)
U’ <+~ REMOVE-DOMINATED-PLANS(U")
until MAX-DIFFERENCE(U,U’) < e(1—7)/v
return U

Figure 17.16 A high-level sketch of the value iteration algorithm for POMDPs. The
REMOVE-DOMINATED-PLANS step and MAX-DIFFERENCE test are typically implemented
as linear programs.

Given such a utility function, an executable policy can be extracted by looking at which
hyperplane is optimal at any given belief state b and executing the first action of the corre-
sponding plan. In Figure 17.15(d), the corresponding optimal policy is still the same as for
depth-1 plans: Stay when b(B) > 0.5 and Go otherwise.

In practice, the value iteration algorithm in Figure 17.16 is hopelessly inefficient for larger
problems—even the 4 x 3 POMDP is too hard. The main reason is that given n undominated
conditional plans at level d, the algorithm constructs |A| -nlEl conditional plans at level d + 1
before eliminating the dominated ones. With the four-bit sensor, |E| is 16, and n can be in the
hundreds, so this is hopeless.

Since this algorithm was developed in the 1970s, there have been several advances, in-
cluding more efficient forms of value iteration and various kinds of policy iteration algo-
rithms. Some of these are discussed in the notes at the end of the chapter. For general
POMDPs, however, finding optimal policies is very difficult (PSPACE-hard, in fact—that is,
very hard indeed). The next section describes a different, approximate method for solving
POMDPs, one based on look-ahead search.

17.5.2 Online algorithms for POMDPs

The basic design for an online POMDP agent is straightforward: it starts with some prior
belief state; it chooses an action based on some deliberation process centered on its current
belief state; after acting, it receives an observation and updates its belief state using a filtering
algorithm; and the process repeats.

One obvious choice for the deliberation process is the expectimax algorithm from Sec-
tion 17.2.4, except with belief states rather than physical states as the decision nodes in the
tree. The chance nodes in the POMDP tree have branches labeled by possible observations
and leading to the next belief state, with transition probabilities given by Equation (17.17). A
fragment of the belief-state expectimax tree for the 4 x 3 POMDP is shown in Figure 17.17.

593

