

Figure 3.2 The state-space graph for the two-cell vacuum world. There are 8 states and three actions for each state: $\mathrm{L}=$ Left, $\mathrm{R}=$ Right, $\mathrm{S}=$ Suck.
the agent can pick up, push, or otherwise act upon; a wall or other impassible obstacle in a cell prevents an agent from moving into that cell. The vacuum world from Section 2.1 can be formulated as a grid world problem as follows:

- States: A state of the world says which objects are in which cells. For the vacuum world, the objects are the agent and any dirt. In the simple two-cell version, the agent can be in either of the two cells, and each cell can either contain dirt or not, so there are $2 \cdot 2 \cdot 2=8$ states (see Figure 3.2). In general, a vacuum environment with $n$ cells has $n \cdot 2^{n}$ states.
- Initial state: Any state can be designated as the initial state.
- Actions: In the two-cell world we defined three actions: Suck, move Left, and move Right. In a two-dimensional multi-cell world we need more movement actions. We could add Upward and Downward, giving us four absolute movement actions, or we could switch to egocentric actions, defined relative to the viewpoint of the agent-for example, Forward, Backward, TurnRight, and TurnLeft.
- Transition model: Suck removes any dirt from the agent's cell; Forward moves the agent ahead one cell in the direction it is facing, unless it hits a wall, in which case the action has no effect. Backward moves the agent in the opposite direction, while TurnRight and TurnLeft change the direction it is facing by $90^{\circ}$.
- Goal states: The states in which every cell is clean.
- Action cost: Each action costs 1.

Another type of grid world is the sokoban puzzle, in which the agent's goal is to push a number of boxes, scattered about the grid, to designated storage locations. There can be at most one box per cell. When an agent moves forward into a cell containing a box and there is an empty cell on the other side of the box, then both the box and the agent move forward.

