
Section 22.2 Passive Reinforcement Learning 793

learns nothing until the end of the trial. More broadly, we can view direct utility estimation

as searching for U in a hypothesis space that is much larger than it needs to be, in that it

includes many functions that violate the Bellman equations. For this reason, the algorithm

often converges very slowly.

22.2.2 Adaptive dynamic programming

An adaptive dynamic programming (or ADP) agent takes advantage of the constraints Adaptive dynamic
programming

among the utilities of states by learning the transition model that connects them and solv-

ing the corresponding Markov decision process using dynamic programming. For a passive

learning agent, this means plugging the learned transition model P(s′ |s,π(s)) and the ob-

served rewards R(s,π(s),s′) into Equation (22.2) to calculate the utilities of the states. As

we remarked in our discussion of policy iteration in Chapter 17, these Bellman equations are

linear when the policy π is fixed, so they can be solved using any linear algebra package.

Alternatively, we can adopt the approach of modified policy iteration (see page 578),

using a simplified value iteration process to update the utility estimates after each change to

the learned model. Because the model usually changes only slightly with each observation,

the value iteration process can use the previous utility estimates as initial values and typically

converge very quickly.

Learning the transition model is easy, because the environment is fully observable. This

means that we have a supervised learning task where the input for each training example is a

state–action pair, (s,a), and the output is the resulting state, s′. The transition model P(s′ | s,a)
is represented as a table and it is estimated directly from the counts that are accumulated in

Ns′ |sa. The counts record how often state s′ is reached when executing a in s. For example, in

the three trials given on page 792, Right is executed four times in (3,3) and the resulting state

is (3,2) twice and (4,3) twice, so P((3,2) | (3,3),Right) and P((4,3) | (3,3),Right) are both

estimated to be 1
2 .

The full agent program for a passive ADP agent is shown in Figure 22.2. Its perfor-

mance on the 4×3 world is shown in Figure 22.3. In terms of how quickly its value estimates

improve, the ADP agent is limited only by its ability to learn the transition model. In this

sense, it provides a standard against which to measure any other reinforcement learning al-

gorithms. It is, however, intractable for large state spaces. In backgammon, for example, it

would involve solving roughly 1020 equations in 1020 unknowns.

22.2.3 Temporal-difference learning

Solving the underlying MDP as in the preceding section is not the only way to bring the

Bellman equations to bear on the learning problem. Another way is to use the observed

transitions to adjust the utilities of the observed states so that they agree with the constraint

equations. Consider, for example, the transition from (1,3) to (2,3) in the second trial on

page 792. Suppose that as a result of the first trial, the utility estimates are Uπ(1,3)=0.88

and Uπ(2,3)=0.96. Now, if this transition from (1,3) to (2,3) occurred all the time, we would

expect the utilities to obey the equation

Uπ(1,3) =−0.04+Uπ(2,3) ,

so Uπ(1,3) would be 0.92. Thus, its current estimate of 0.88 might be a little low and should

be increased. More generally, when a transition occurs from state s to state s′ via action π(s),

