Summary

form of a heuristic function that estimates how far a given state is from the goal, or if we
precompute partial solutions involving patterns or landmarks.

Before an agent can start searching, a well-defined problem must be formulated.

A problem consists of five parts: the initial state, a set of actions, a transition model
describing the results of those actions, a set of goal states, and an action cost function.

The environment of the problem is represented by a state space graph. A path through
the state space (a sequence of actions) from the initial state to a goal state is a solution.

Search algorithms generally treat states and actions as atomic, without any internal
structure (although we introduced features of states when it came time to do learning).

Search algorithms are judged on the basis of completeness, cost optimality, time com-
plexity, and space complexity.

Uninformed search methods have access only to the problem definition. Algorithms
build a search tree in an attempt to find a solution. Algorithms differ based on which
node they expand first:

— Best-first search selects nodes for expansion using an evaluation function.

— Breadth-first search expands the shallowest nodes first; it is complete, optimal
for unit action costs, but has exponential space complexity.

— Uniform-cost search expands the node with lowest path cost, g(n), and is optimal
for general action costs.

— Depth-first search expands the deepest unexpanded node first. It is neither com-
plete nor optimal, but has linear space complexity. Depth-limited search adds a
depth bound.

— Iterative deepening search calls depth-first search with increasing depth limits
until a goal is found. It is complete when full cycle checking is done, optimal for
unit action costs, has time complexity comparable to breadth-first search, and has
linear space complexity.

— Bidirectional search expands two frontiers, one around the initial state and one
around the goal, stopping when the two frontiers meet.

Informed search methods have access to a heuristic function A(n) that estimates the
cost of a solution from n. They may have access to additional information such as
pattern databases with solution costs.

- Greedy best-first search expands nodes with minimal A(n). It is not optimal but
is often efficient.

— A" search expands nodes with minimal f(n) = g(n) + h(n). A* is complete and
optimal, provided that A(n) is admissible. The space complexity of A* is still an
issue for many problems.

— Bidirectional A* search is sometimes more efficient than A* itself.

— IDA* (iterative deepening A* search) is an iterative deepening version of A*, and
thus adresses the space complexity issue.

— RBFS (recursive best-first search) and SMA* (simplified memory-bounded A*)
are robust, optimal search algorithms that use limited amounts of memory; given
enough time, they can solve problems for which A* runs out of memory.

105



