
Summary 105

form of a heuristic function that estimates how far a given state is from the goal, or if we
precompute partial solutions involving patterns or landmarks.

• Before an agent can start searching, a well-defined problem must be formulated.

• A problem consists of five parts: the initial state, a set of actions, a transition model

describing the results of those actions, a set of goal states, and an action cost function.

• The environment of the problem is represented by a state space graph. A path through
the state space (a sequence of actions) from the initial state to a goal state is a solution.

• Search algorithms generally treat states and actions as atomic, without any internal
structure (although we introduced features of states when it came time to do learning).

• Search algorithms are judged on the basis of completeness, cost optimality, time com-

plexity, and space complexity.

• Uninformed search methods have access only to the problem definition. Algorithms
build a search tree in an attempt to find a solution. Algorithms differ based on which
node they expand first:

– Best-first search selects nodes for expansion using an evaluation function.

– Breadth-first search expands the shallowest nodes first; it is complete, optimal
for unit action costs, but has exponential space complexity.

– Uniform-cost search expands the node with lowest path cost, g(n), and is optimal
for general action costs.

– Depth-first search expands the deepest unexpanded node first. It is neither com-
plete nor optimal, but has linear space complexity. Depth-limited search adds a
depth bound.

– Iterative deepening search calls depth-first search with increasing depth limits
until a goal is found. It is complete when full cycle checking is done, optimal for
unit action costs, has time complexity comparable to breadth-first search, and has
linear space complexity.

– Bidirectional search expands two frontiers, one around the initial state and one
around the goal, stopping when the two frontiers meet.

• Informed search methods have access to a heuristic function h(n) that estimates the
cost of a solution from n. They may have access to additional information such as
pattern databases with solution costs.

– Greedy best-first search expands nodes with minimal h(n). It is not optimal but
is often efficient.

– A∗ search expands nodes with minimal f (n) = g(n)+ h(n). A∗ is complete and
optimal, provided that h(n) is admissible. The space complexity of A∗ is still an
issue for many problems.

– Bidirectional A∗ search is sometimes more efficient than A∗ itself.

– IDA∗ (iterative deepening A∗ search) is an iterative deepening version of A∗, and
thus adresses the space complexity issue.

– RBFS (recursive best-first search) and SMA∗ (simplified memory-bounded A∗)
are robust, optimal search algorithms that use limited amounts of memory; given
enough time, they can solve problems for which A∗ runs out of memory.


