Artificial Intelligence
A Modern Approach
Fourth Edition
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graham</td>
<td>ANSI Common Lisp</td>
</tr>
<tr>
<td>Jurafsky & Martin</td>
<td>Speech and Language Processing, 2nd ed.</td>
</tr>
<tr>
<td>Neapolitan</td>
<td>Learning Bayesian Networks</td>
</tr>
</tbody>
</table>
Artificial Intelligence
A Modern Approach
Fourth Edition

Stuart J. Russell and Peter Norvig

Contributing writers:
Ming-Wei Chang
Jacob Devlin
Anca Dragan
David Forsyth
Ian Goodfellow
Jitendra M. Malik
Vikash Mansinghka
Judea Pearl
Michael Wooldridge
For Loy, Gordon, Lucy, George, and Isaac — S.J.R.

For Kris, Isabella, and Juliet — P.N.
Preface

Artificial Intelligence (AI) is a big field, and this is a big book. We have tried to explore the full breadth of the field, which encompasses logic, probability, and continuous mathematics; perception, reasoning, learning, and action; fairness, trust, social good, and safety; and applications that range from microelectronic devices to robotic planetary explorers to online services with billions of users.

The subtitle of this book is “A Modern Approach.” That means we have chosen to tell the story from a current perspective. We synthesize what is now known into a common framework, recasting early work using the ideas and terminology that are prevalent today. We apologize to those whose subfields are, as a result, less recognizable.

New to this edition

This edition reflects the changes in AI since the last edition in 2010:

- We focus more on machine learning rather than hand-crafted knowledge engineering, due to the increased availability of data, computing resources, and new algorithms.
- Deep learning, probabilistic programming, and multiagent systems receive expanded coverage, each with their own chapter.
- The coverage of natural language understanding, robotics, and computer vision has been revised to reflect the impact of deep learning.
- The robotics chapter now includes robots that interact with humans and the application of reinforcement learning to robotics.
- Previously we defined the goal of AI as creating systems that try to maximize expected utility, where the specific utility information—the objective—is supplied by the human designers of the system. Now we no longer assume that the objective is fixed and known by the AI system; instead, the system may be uncertain about the true objectives of the humans on whose behalf it operates. It must learn what to maximize and must function appropriately even while uncertain about the objective.
- We increase coverage of the impact of AI on society, including the vital issues of ethics, fairness, trust, and safety.
- We have moved the exercises from the end of each chapter to an online site. This allows us to continuously add to, update, and improve the exercises, to meet the needs of instructors and to reflect advances in the field and in AI-related software tools.
- Overall, about 25% of the material in the book is brand new. The remaining 75% has been largely rewritten to present a more unified picture of the field. 22% of the citations in this edition are to works published after 2010.

Overview of the book

The main unifying theme is the idea of an **intelligent agent**. We define AI as the study of agents that receive percepts from the environment and perform actions. Each such agent implements a function that maps percept sequences to actions, and we cover different ways to represent these functions, such as reactive agents, real-time planners, decision-theoretic
systems, and deep learning systems. We emphasize learning both as a construction method for competent systems and as a way of extending the reach of the designer into unknown environments. We treat robotics and vision not as independently defined problems, but as occurring in the service of achieving goals. We stress the importance of the task environment in determining the appropriate agent design.

Our primary aim is to convey the ideas that have emerged over the past seventy years of AI research and the past two millennia of related work. We have tried to avoid excessive formality in the presentation of these ideas, while retaining precision. We have included mathematical formulas and pseudocode algorithms to make the key ideas concrete; mathematical concepts and notation are described in Appendix A and our pseudocode is described in Appendix B.

This book is primarily intended for use in an undergraduate course or course sequence. The book has 28 chapters, each requiring about a week’s worth of lectures, so working through the whole book requires a two-semester sequence. A one-semester course can use selected chapters to suit the interests of the instructor and students. The book can also be used in a graduate-level course (perhaps with the addition of some of the primary sources suggested in the bibliographical notes), or for self-study or as a reference.

Throughout the book, important points are marked with a triangle icon in the margin. Wherever a new term is defined, it is also noted in the margin. Subsequent significant uses of the term are in bold, but not in the margin. We have included a comprehensive index and an extensive bibliography.

The only prerequisite is familiarity with basic concepts of computer science (algorithms, data structures, complexity) at a sophomore level. Freshman calculus and linear algebra are useful for some of the topics.

Online resources

Online resources are available through pearsonhighered.com/cs-resources or at the book’s Web site, aima.cs.berkeley.edu. There you will find:

- Exercises, programming projects, and research projects. These are no longer at the end of each chapter; they are online only. Within the book, we refer to an online exercise with a name like “Exercise 6.NARY.” Instructions on the Web site allow you to find exercises by name or by topic.
- Implementations of the algorithms in the book in Python, Java, and other programming languages (currently hosted at github.com/aimacode).
- A list of over 1400 schools that have used the book, many with links to online course materials and syllabi.
- Supplementary material and links for students and instructors.
- Instructions on how to report errors in the book, in the likely event that some exist.

Book cover

The cover depicts the final position from the decisive game 6 of the 1997 chess match in which the program Deep Blue defeated Garry Kasparov (playing Black), making this the first time a computer had beaten a world champion in a chess match. Kasparov is shown at the
top. To his right is a pivotal position from the second game of the historic Go match between former world champion Lee Sedol and DeepMind’s ALPHAGO program. Move 37 by ALPHAGO violated centuries of Go orthodoxy and was immediately seen by human experts as an embarrassing mistake, but it turned out to be a winning move. At top left is an Atlas humanoid robot built by Boston Dynamics. A depiction of a self-driving car sensing its environment appears between Ada Lovelace, the world’s first computer programmer, and Alan Turing, whose fundamental work defined artificial intelligence. At the bottom of the chess board are a Mars Exploration Rover robot and a statue of Aristotle, who pioneered the study of logic; his planning algorithm from De Motu Animalium appears behind the authors’ names. Behind the chess board is a probabilistic programming model used by the UN Comprehensive Nuclear-Test-Ban Treaty Organization for detecting nuclear explosions from seismic signals.

Acknowledgments

It takes a global village to make a book. Over 600 people read parts of the book and made suggestions for improvement. The complete list is at aima.cs.berkeley.edu/ack.html; we are grateful to all of them. We have space here to mention only a few especially important contributors. First the contributing writers:

- Judea Pearl (Section 13.5, Causal Networks);
- Vikash Mansinghka (Section 15.3, Programs as Probability Models);
- Michael Wooldridge (Chapter 18, Multiagent Decision Making);
- Ian Goodfellow (Chapter 21, Deep Learning);
- Jacob Devlin and Ming-Wei Chang (Chapter 24, Deep Learning for Natural Language);
- Jitendra Malik and David Forsyth (Chapter 25, Computer Vision);
- Anca Dragan (Chapter 26, Robotics).

Then some key roles:

- Cynthia Yeung and Malika Cantor (project management);
- Julie Sussman and Tom Galloway (copyediting and writing suggestions);
- Omari Stephens (illustrations);
- Tracy Johnson (editor);
- Erin Ault and Rose Kernan (cover and color conversion);
- Nalin Chhibber, Sam Goto, Raymond de Lacaze, Ravi Mohan, Ciaran O’Reilly, Amit Patel, Dragomir Radiv, and Samagra Sharma (online code development and mentoring);
- Google Summer of Code students (online code development).

Stuart would like to thank his wife, Loy Sheflott, for her endless patience and boundless wisdom. He hopes that Gordon, Lucy, George, and Isaac will soon be reading this book after they have forgiven him for working so long on it. RUGS (Russell’s Unusual Group of Students) have been unusually helpful, as always.

Peter would like to thank his parents (Torsten and Gerda) for getting him started, and his wife (Kris), children (Bella and Juliet), colleagues, boss, and friends for encouraging and tolerating him through the long hours of writing and rewriting.
About the Authors

Stuart Russell was born in 1962 in Portsmouth, England. He received his B.A. with first-class honours in physics from Oxford University in 1982, and his Ph.D. in computer science from Stanford in 1986. He then joined the faculty of the University of California at Berkeley, where he is a professor and former chair of computer science, director of the Center for Human-Compatible AI, and holder of the Smith–Zadeh Chair in Engineering. In 1990, he received the Presidential Young Investigator Award of the National Science Foundation, and in 1995 he was cowinner of the Computers and Thought Award. He is a Fellow of the American Association for Artificial Intelligence, the Association for Computing Machinery, and the American Association for the Advancement of Science, an Honorary Fellow of Wadham College, Oxford, and an Andrew Carnegie Fellow. He held the Chaire Blaise Pascal in Paris from 2012 to 2014. He has published over 300 papers on a wide range of topics in artificial intelligence. His other books include The Use of Knowledge in Analogy and Induction, Do the Right Thing: Studies in Limited Rationality (with Eric Wefald), and Human Compatible: Artificial Intelligence and the Problem of Control.

Peter Norvig is currently a Director of Research at Google, Inc., and was previously the director responsible for the core Web search algorithms. He co-taught an online AI class that signed up 160,000 students, helping to kick off the current round of massive open online classes. He was head of the Computational Sciences Division at NASA Ames Research Center, overseeing research and development in artificial intelligence and robotics. He received a B.S. in applied mathematics from Brown University and a Ph.D. in computer science from Berkeley. He has been a professor at the University of Southern California and a faculty member at Berkeley and Stanford. He is a Fellow of the American Association for Artificial Intelligence, the Association for Computing Machinery, the American Academy of Arts and Sciences, and the California Academy of Science. His other books are Paradigms of AI Programming: Case Studies in Common Lisp, Verbmobile: A Translation System for Face-to-Face Dialog, and Intelligent Help Systems for UNIX.

The two authors shared the inaugural AAAI/EAAI Outstanding Educator award in 2016.
Contents

I Artificial Intelligence

1 Introduction
 1.1 What Is AI?
 1.2 The Foundations of Artificial Intelligence
 1.3 The History of Artificial Intelligence
 1.4 The State of the Art
 1.5 Risks and Benefits of AI
 Summary
 Bibliographical and Historical Notes

II Problem-solving

3 Solving Problems by Searching
 3.1 Problem-Solving Agents
 3.2 Example Problems
 3.3 Search Algorithms
 3.4 Uninformed Search Strategies
 3.5 Informed (Heuristic) Search Strategies
 3.6 Heuristic Functions
 Summary
 Bibliographical and Historical Notes

4 Search in Complex Environments
 4.1 Local Search and Optimization Problems
 4.2 Local Search in Continuous Spaces
 4.3 Search with Nondeterministic Actions
 4.4 Search in Partially Observable Environments
 4.5 Online Search Agents and Unknown Environments
 Summary
 Bibliographical and Historical Notes

5 Adversarial Search and Games
 5.1 Game Theory
 5.2 Optimal Decisions in Games
Contents

5.3 Heuristic Alpha–Beta Tree Search .. 156
5.4 Monte Carlo Tree Search .. 161
5.5 Stochastic Games .. 164
5.6 Partially Observable Games ... 168
5.7 Limitations of Game Search Algorithms 173
Summary ... 174
Bibliographical and Historical Notes 175

6 Constraint Satisfaction Problems 180
 6.1 Defining Constraint Satisfaction Problems 180
 6.2 Constraint Propagation: Inference in CSPs 185
 6.3 Backtracking Search for CSPs .. 191
 6.4 Local Search for CSPs .. 197
 6.5 The Structure of Problems .. 199
Summary ... 203
Bibliographical and Historical Notes 204

III Knowledge, reasoning, and planning

7 Logical Agents ... 208
 7.1 Knowledge-Based Agents .. 209
 7.2 The Wumpus World .. 210
 7.3 Logic ... 214
 7.4 Propositional Logic: A Very Simple Logic 217
 7.5 Propositional Theorem Proving 222
 7.6 Effective Propositional Model Checking 232
 7.7 Agents Based on Propositional Logic 237
Summary ... 246
Bibliographical and Historical Notes 247

8 First-Order Logic .. 251
 8.1 Representation Revisited .. 251
 8.2 Syntax and Semantics of First-Order Logic 256
 8.3 Using First-Order Logic .. 265
 8.4 Knowledge Engineering in First-Order Logic 271
Summary ... 277
Bibliographical and Historical Notes 278

9 Inference in First-Order Logic .. 280
 9.1 Propositional vs. First-Order Inference 280
 9.2 Unification and First-Order Inference 282
 9.3 Forward Chaining ... 286
 9.4 Backward Chaining .. 293
 9.5 Resolution .. 298
Summary ... 309
Bibliographical and Historical Notes 310
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Knowledge Representation</td>
<td>314</td>
</tr>
<tr>
<td>10.1</td>
<td>Ontological Engineering</td>
<td>314</td>
</tr>
<tr>
<td>10.2</td>
<td>Categories and Objects</td>
<td>317</td>
</tr>
<tr>
<td>10.3</td>
<td>Events</td>
<td>322</td>
</tr>
<tr>
<td>10.4</td>
<td>Mental Objects and Modal Logic</td>
<td>326</td>
</tr>
<tr>
<td>10.5</td>
<td>Reasoning Systems for Categories</td>
<td>329</td>
</tr>
<tr>
<td>10.6</td>
<td>Reasoning with Default Information</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>Bibliographical and Historical Notes</td>
<td>338</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Automated Planning</td>
<td>344</td>
</tr>
<tr>
<td>11.1</td>
<td>Definition of Classical Planning</td>
<td>344</td>
</tr>
<tr>
<td>11.2</td>
<td>Algorithms for Classical Planning</td>
<td>348</td>
</tr>
<tr>
<td>11.3</td>
<td>Heuristics for Planning</td>
<td>353</td>
</tr>
<tr>
<td>11.4</td>
<td>Hierarchical Planning</td>
<td>356</td>
</tr>
<tr>
<td>11.5</td>
<td>Planning and Acting in Nondeterministic Domains</td>
<td>365</td>
</tr>
<tr>
<td>11.6</td>
<td>Time, Schedules, and Resources</td>
<td>374</td>
</tr>
<tr>
<td>11.7</td>
<td>Analysis of Planning Approaches</td>
<td>378</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>Bibliographical and Historical Notes</td>
<td>380</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>Uncertain knowledge and reasoning</td>
<td>385</td>
</tr>
<tr>
<td>12</td>
<td>Quantifying Uncertainty</td>
<td>385</td>
</tr>
<tr>
<td>12.1</td>
<td>Acting under Uncertainty</td>
<td>385</td>
</tr>
<tr>
<td>12.2</td>
<td>Basic Probability Notation</td>
<td>388</td>
</tr>
<tr>
<td>12.3</td>
<td>Inference Using Full Joint Distributions</td>
<td>395</td>
</tr>
<tr>
<td>12.4</td>
<td>Independence</td>
<td>397</td>
</tr>
<tr>
<td>12.5</td>
<td>Bayes’ Rule and Its Use</td>
<td>399</td>
</tr>
<tr>
<td>12.6</td>
<td>Naive Bayes Models</td>
<td>402</td>
</tr>
<tr>
<td>12.7</td>
<td>The Wumpus World Revisited</td>
<td>404</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Bibliographical and Historical Notes</td>
<td>408</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Probabilistic Reasoning</td>
<td>412</td>
</tr>
<tr>
<td>13.1</td>
<td>Representing Knowledge in an Uncertain Domain</td>
<td>412</td>
</tr>
<tr>
<td>13.2</td>
<td>The Semantics of Bayesian Networks</td>
<td>414</td>
</tr>
<tr>
<td>13.3</td>
<td>Exact Inference in Bayesian Networks</td>
<td>427</td>
</tr>
<tr>
<td>13.4</td>
<td>Approximate Inference for Bayesian Networks</td>
<td>435</td>
</tr>
<tr>
<td>13.5</td>
<td>Causal Networks</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>Bibliographical and Historical Notes</td>
<td>454</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Probabilistic Reasoning over Time</td>
<td>461</td>
</tr>
<tr>
<td>14.1</td>
<td>Time and Uncertainty</td>
<td>461</td>
</tr>
<tr>
<td>14.2</td>
<td>Inference in Temporal Models</td>
<td>465</td>
</tr>
</tbody>
</table>
Contents

14.3 Hidden Markov Models ... 473
14.4 Kalman Filters ... 479
14.5 Dynamic Bayesian Networks ... 485
Summary ... 496
Bibliographical and Historical Notes 497

15 Probabilistic Programming .. 500
15.1 Relational Probability Models ... 501
15.2 Open-Universe Probability Models 507
15.3 Keeping Track of a Complex World 514
15.4 Programs as Probability Models 519
Summary ... 523
Bibliographical and Historical Notes 524

16 Making Simple Decisions ... 528
16.1 Combining Beliefs and Desires under Uncertainty 528
16.2 The Basis of Utility Theory .. 529
16.3 Utility Functions .. 532
16.4 Multiattribute Utility Functions 540
16.5 Decision Networks .. 544
16.6 The Value of Information .. 547
16.7 Unknown Preferences .. 553
Summary ... 557
Bibliographical and Historical Notes 557

17 Making Complex Decisions .. 562
17.1 Sequential Decision Problems .. 562
17.2 Algorithms for MDPs .. 572
17.3 Bandit Problems .. 581
17.4 Partially Observable MDPs ... 588
17.5 Algorithms for Solving POMDPs 590
Summary ... 595
Bibliographical and Historical Notes 596

18 Multiagent Decision Making .. 599
18.1 Properties of Multiagent Environments 599
18.2 Non-Cooperative Game Theory 605
18.3 Cooperative Game Theory .. 626
18.4 Making Collective Decisions .. 632
Summary ... 645
Bibliographical and Historical Notes 646

V Machine Learning

19 Learning from Examples ... 651
19.1 Forms of Learning .. 651
19.2 Supervised Learning .. 653
19.3 Learning Decision Trees 657
19.4 Model Selection and Optimization 665
19.5 The Theory of Learning 672
19.6 Linear Regression and Classification 676
19.7 Nonparametric Models 686
19.8 Ensemble Learning .. 696
19.9 Developing Machine Learning Systems 704
Summary ... 714
Bibliographical and Historical Notes 715

20 Learning Probabilistic Models 721
20.1 Statistical Learning 721
20.2 Learning with Complete Data 724
20.3 Learning with Hidden Variables: The EM Algorithm 737
Summary ... 746
Bibliographical and Historical Notes 747

21 Deep Learning 750
21.1 Simple Feedforward Networks 751
21.2 Computation Graphs for Deep Learning 756
21.3 Convolutional Networks 760
21.4 Learning Algorithms 765
21.5 Generalization .. 768
21.6 Recurrent Neural Networks 772
21.7 Unsupervised Learning and Transfer Learning 775
21.8 Applications .. 782
Summary ... 784
Bibliographical and Historical Notes 785

22 Reinforcement Learning 789
22.1 Learning from Rewards 789
22.2 Passive Reinforcement Learning 791
22.3 Active Reinforcement Learning 797
22.4 Generalization in Reinforcement Learning 803
22.5 Policy Search .. 810
22.6 Apprenticeship and Inverse Reinforcement Learning 812
22.7 Applications of Reinforcement Learning 815
Summary ... 818
Bibliographical and Historical Notes 819

VI Communicating, perceiving, and acting

23 Natural Language Processing 823
23.1 Language Models ... 823
23.2 Grammar ... 833
Contents

23.3 Parsing .. 835
23.4 Augmented Grammars 841
23.5 Complications of Real Natural Language 845
23.6 Natural Language Tasks 849
Summary .. 850
Bibliographical and Historical Notes 851

24 Deep Learning for Natural Language Processing 856

24.1 Word Embeddings 856
24.2 Recurrent Neural Networks for NLP 860
24.3 Sequence-to-Sequence Models 864
24.4 The Transformer Architecture 868
24.5 Pretraining and Transfer Learning 871
24.6 State of the art 875
Summary .. 878
Bibliographical and Historical Notes 878

25 Computer Vision 881

25.1 Introduction .. 881
25.2 Image Formation 882
25.3 Simple Image Features 888
25.4 Classifying Images 895
25.5 Detecting Objects 899
25.6 The 3D World ... 901
25.7 Using Computer Vision 906
Summary .. 919
Bibliographical and Historical Notes 920

26 Robotics 925

26.1 Robots .. 925
26.2 Robot Hardware .. 926
26.3 What kind of problem is robotics solving? 930
26.4 Robotic Perception 931
26.5 Planning and Control 938
26.6 Planning Uncertain Movements 956
26.7 Reinforcement Learning in Robotics 958
26.8 Humans and Robots 961
26.9 Alternative Robotic Frameworks 968
26.10 Application Domains 971
Summary .. 974
Bibliographical and Historical Notes 975

VII Conclusions

27 Philosophy, Ethics, and Safety of AI 981

27.1 The Limits of AI .. 981
27.2 Can Machines Really Think? ... 984
27.3 The Ethics of AI ... 986
Summary ... 1005
Bibliographical and Historical Notes ... 1006

28 The Future of AI ... 1012
28.1 AI Components ... 1012
28.2 AI Architectures ... 1018

A Mathematical Background ... 1023
A.1 Complexity Analysis and O(\) Notation ... 1023
A.2 Vectors, Matrices, and Linear Algebra ... 1025
A.3 Probability Distributions ... 1027
Bibliographical and Historical Notes ... 1029

B Notes on Languages and Algorithms ... 1030
B.1 Defining Languages with Backus–Naur Form (BNF) ... 1030
B.2 Describing Algorithms with Pseudocode ... 1031
B.3 Online Supplemental Material ... 1032

Bibliography ... 1033

Index ... 1069