
20 STATISTICAL LEARNING
METHODS

In which we view learning as a form of uncertain reasoning from observations.

Part V pointed out the prevalence of uncertainty in real environments. Agents can
handle uncertainty by using the methods of probability and decision theory, but first they
must learn their probabilistic theories of the world from experience. This chapter explains
how they can do that. We will see how to formulate the learning task itself as a process
of probabilistic inference (Section 20.1). We will see that a Bayesian view of learning is
extremely powerful, providing general solutions to the problems of noise, overfitting, and
optimal prediction. It also takes into account the fact that a less-than-omniscient agent can
never be certain about which theory of the world is correct, yet must still make decisions by
using some theory of the world.

We describe methods for learning probability models—primarily Bayesian networks—
in Sections 20.2 and 20.3. Section 20.4 looks at learning methods that store and recall specific
instances. Section 20.5 covers neural network learning and Section 20.6 introduces kernel
machines. Some of the material in this chapter is fairly mathematical (requiring a basic un-
derstanding of multivariate calculus), although the general lessons can be understood without
plunging into the details. It may benefit the reader at this point to review the material in
Chapters 13 and 14 and to peek at the mathematical background in Appendix A.

20.1 STATISTICAL LEARNING

The key concepts in this chapter, just as in Chapter 18, are data and hypotheses. Here, the
data are evidence—that is, instantiations of some or all of the random variables describing
the domain. The hypotheses are probabilistic theories of how the domain works, including
logical theories as a special case.

Let us consider a very simple example. Our favorite Surprise candy comes in two
flavors: cherry (yum) and lime (ugh). The candy manufacturer has a peculiar sense of humor
and wraps each piece of candy in the same opaque wrapper, regardless of flavor. The candy is
sold in very large bags, of which there are known to be five kinds—again, indistinguishable
from the outside:
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h1: 100% cherry
h2: 75% cherry + 25% lime
h3: 50% cherry + 50% lime
h4: 25% cherry + 75% lime
h5: 100% lime

Given a new bag of candy, the random variable H (for hypothesis) denotes the type of the
bag, with possible values h1 through h5. H is not directly observable, of course. As the
pieces of candy are opened and inspected, data are revealed—D1, D2, . . ., DN , where each
Di is a random variable with possible values cherry and lime. The basic task faced by the
agent is to predict the flavor of the next piece of candy.1 Despite its apparent triviality, this
scenario serves to introduce many of the major issues. The agent really does need to infer a
theory of its world, albeit a very simple one.

Bayesian learning simply calculates the probability of each hypothesis, given the data,BAYESIAN LEARNING

and makes predictions on that basis. That is, the predictions are made by using all the hy-
potheses, weighted by their probabilities, rather than by using just a single “best” hypothesis.
In this way, learning is reduced to probabilistic inference. Let D represent all the data, with
observed value d; then the probability of each hypothesis is obtained by Bayes’ rule:

P (hi|d) = αP (d|hi)P (hi) . (20.1)

Now, suppose we want to make a prediction about an unknown quantity X . Then we have

P(X|d) =
∑

i

P(X|d, hi)P(hi|d) =
∑

i

P(X|hi)P (hi|d) , (20.2)

where we have assumed that each hypothesis determines a probability distribution over X .
This equation shows that predictions are weighted averages over the predictions of the indi-
vidual hypotheses. The hypotheses themselves are essentially “intermediaries” between the
raw data and the predictions. The key quantities in the Bayesian approach are the hypothesis
prior, P (hi), and the likelihood of the data under each hypothesis, P (d|hi).HYPOTHESIS PRIOR

LIKELIHOOD For our candy example, we will assume for the time being that the prior distribution
over h1, . . . , h5 is given by 〈0.1, 0.2, 0.4, 0.2, 0.1〉, as advertised by the manufacturer. The
likelihood of the data is calculated under the assumption that the observations are i.i.d.—thatI.I.D.

is, independently and identically distributed—so that

P (d|hi) =
∏

j

P (dj|hi) . (20.3)

For example, suppose the bag is really an all-lime bag (h5) and the first 10 candies are all
lime; then P (d|h3) is 0.510, because half the candies in an h3 bag are lime.2 Figure 20.1(a)
shows how the posterior probabilities of the five hypotheses change as the sequence of 10
lime candies is observed. Notice that the probabilities start out at their prior values, so h3

is initially the most likely choice and remains so after 1 lime candy is unwrapped. After 2

1 Statistically sophisticated readers will recognize this scenario as a variant of the urn-and-ball setup. We find
urns and balls less compelling than candy; furthermore, candy lends itself to other tasks, such as deciding whether
to trade the bag with a friend—see Exercise 20.3.
2 We stated earlier that the bags of candy are very large; otherwise, the i.i.d. assumption fails to hold. Technically,
it is more correct (but less hygienic) to rewrap each candy after inspection and return it to the bag.
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Figure 20.1 (a) Posterior probabilities P (hi|d1, . . . , dN ) from Equation (20.1). The num-
ber of observations N ranges from 1 to 10, and each observation is of a lime candy. (b)
Bayesian prediction P (dN+1 = lime|d1, . . . , dN ) from Equation (20.2).

lime candies are unwrapped, h4 is most likely; after 3 or more, h5 (the dreaded all-lime bag)
is the most likely. After 10 in a row, we are fairly certain of our fate. Figure 20.1(b) shows
the predicted probability that the next candy is lime, based on Equation (20.2). As we would
expect, it increases monotonically toward 1.

The example shows that the true hypothesis eventually dominates the Bayesian predic-
tion. This is characteristic of Bayesian learning. For any fixed prior that does not rule out the
true hypothesis, the posterior probability of any false hypothesis will eventually vanish, sim-
ply because the probability of generating “uncharacteristic” data indefinitely is vanishingly
small. (This point is analogous to one made in the discussion of PAC learning in Chapter 18.)
More importantly, the Bayesian prediction is optimal, whether the data set be small or large.
Given the hypothesis prior, any other prediction will be correct less often.

The optimality of Bayesian learning comes at a price, of course. For real learning
problems, the hypothesis space is usually very large or infinite, as we saw in Chapter 18. In
some cases, the summation in Equation (20.2) (or integration, in the continuous case) can be
carried out tractably, but in most cases we must resort to approximate or simplified methods.

A very common approximation—one that is usually adopted in science—is to make pre-
dictions based on a single most probable hypothesis—that is, an hi that maximizes P (hi|d).
This is often called a maximum a posteriori or MAP (pronounced “em-ay-pee”) hypothe-MAXIMUM A

POSTERIORI

sis. Predictions made according to an MAP hypothesis hMAP are approximately Bayesian to
the extent that P(X|d) ≈ P(X|hMAP). In our candy example, hMAP =h5 after three lime
candies in a row, so the MAP learner then predicts that the fourth candy is lime with prob-
ability 1.0—a much more dangerous prediction than the Bayesian prediction of 0.8 shown
in Figure 20.1. As more data arrive, the MAP and Bayesian predictions become closer, be-
cause the competitors to the MAP hypothesis become less and less probable. Although our
example doesn’t show it, finding MAP hypotheses is often much easier than Bayesian learn-
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ing, because it requires solving an optimization problem instead of a large summation (or
integration) problem. We will see examples of this later in the chapter.

In both Bayesian learning and MAP learning, the hypothesis prior P (hi) plays an im-
portant role. We saw in Chapter 18 that overfitting can occur when the hypothesis space
is too expressive, so that it contains many hypotheses that fit the data set well. Rather than
placing an arbitrary limit on the hypotheses to be considered, Bayesian and MAP learning
methods use the prior to penalize complexity. Typically, more complex hypotheses have a
lower prior probability—in part because there are usually many more complex hypotheses
than simple hypotheses. On the other hand, more complex hypotheses have a greater capac-
ity to fit the data. (In the extreme case, a lookup table can reproduce the data exactly with
probability 1.) Hence, the hypothesis prior embodies a trade-off between the complexity of a
hypothesis and its degree of fit to the data.

We can see the effect of this trade-off most clearly in the logical case, where H contains
only deterministic hypotheses. In that case, P (d|hi) is 1 if hi is consistent and 0 otherwise.
Looking at Equation (20.1), we see that hMAP will then be the simplest logical theory that
is consistent with the data. Therefore, maximum a posteriori learning provides a natural
embodiment of Ockham’s razor.

Another insight into the trade-off between complexity and degree of fit is obtained
by taking the logarithm of Equation (20.1). Choosing hMAP to maximize P (d|hi)P (hi)
is equivalent to minimizing

− log2 P (d|hi)− log2 P (hi) .

Using the connection between information encoding and probability that we introduced in
Chapter 18, we see that the − log2 P (hi) term equals the number of bits required to specify
the hypothesis hi. Furthermore, − log2 P (d|hi) is the additional number of bits required
to specify the data, given the hypothesis. (To see this, consider that no bits are required
if the hypothesis predicts the data exactly—as with h5 and the string of lime candies—and
log2 1= 0.) Hence, MAP learning is choosing the hypothesis that provides maximum com-
pression of the data. The same task is addressed more directly by the minimum description
length, or MDL, learning method, which attempts to minimize the size of hypothesis and

MINIMUM
DESCRIPTION
LENGTH

data encodings rather than work with probabilities.
A final simplification is provided by assuming a uniform prior over the space of hy-

potheses. In that case, MAP learning reduces to choosing an hi that maximizes P (d|Hi).
This is called a maximum-likelihood (ML) hypothesis, hML. Maximum-likelihood learningMAXIMUM-

LIKELIHOOD

is very common in statistics, a discipline in which many researchers distrust the subjective
nature of hypothesis priors. It is a reasonable approach when there is no reason to prefer one
hypothesis over another a priori—for example, when all hypotheses are equally complex. It
provides a good approximation to Bayesian and MAP learning when the data set is large,
because the data swamps the prior distribution over hypotheses, but it has problems (as we
shall see) with small data sets.
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20.2 LEARNING WITH COMPLETE DATA

Our development of statistical learning methods begins with the simplest task: parameter
learning with complete data. A parameter learning task involves finding the numerical pa-PARAMETER

LEARNING

COMPLETE DATA rameters for a probability model whose structure is fixed. For example, we might be interested
in learning the conditional probabilities in a Bayesian network with a given structure. Data
are complete when each data point contains values for every variable in the probability model
being learned. Complete data greatly simplify the problem of learning the parameters of a
complex model. We will also look briefly at the problem of learning structure.

Maximum-likelihood parameter learning: Discrete models

Suppose we buy a bag of lime and cherry candy from a new manufacturer whose lime–cherry
proportions are completely unknown—that is, the fraction could be anywhere between 0 and
1. In that case, we have a continuum of hypotheses. The parameter in this case, which we
call θ, is the proportion of cherry candies, and the hypothesis is hθ. (The proportion of limes
is just 1− θ.) If we assume that all proportions are equally likely a priori, then a maximum-
likelihood approach is reasonable. If we model the situation with a Bayesian network, we
need just one random variable, Flavor (the flavor of a randomly chosen candy from the bag).
It has values cherry and lime, where the probability of cherry is θ (see Figure 20.2(a)). Now
suppose we unwrap N candies, of which c are cherries and `= N − c are limes. According
to Equation (20.3), the likelihood of this particular data set is

P (d|hθ) =
N
∏

j =1

P (dj |hθ) = θc · (1− θ)` .

The maximum-likelihood hypothesis is given by the value of θ that maximizes this expres-
sion. The same value is obtained by maximizing the log likelihood,LOG LIKELIHOOD

L(d|hθ) = log P (d|hθ) =
N
∑

j =1

log P (dj|hθ) = c log θ + ` log(1− θ) .

(By taking logarithms, we reduce the product to a sum over the data, which is usually easier
to maximize.) To find the maximum-likelihood value of θ, we differentiate L with respect to
θ and set the resulting expression to zero:

dL(d|hθ)

dθ
=

c

θ
− `

1− θ
= 0 ⇒ θ =

c

c + `
=

c

N
.

In English, then, the maximum-likelihood hypothesis hML asserts that the actual proportion
of cherries in the bag is equal to the observed proportion in the candies unwrapped so far!

It appears that we have done a lot of work to discover the obvious. In fact, though, we
have laid out one standard method for maximum-likelihood parameter learning:

1. Write down an expression for the likelihood of the data as a function of the parameter(s).

2. Write down the derivative of the log likelihood with respect to each parameter.

3. Find the parameter values such that the derivatives are zero.
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Figure 20.2 (a) Bayesian network model for the case of candies with an unknown propor-
tion of cherries and limes. (b) Model for the case where the wrapper color depends (proba-
bilistically) on the candy flavor.

The trickiest step is usually the last. In our example, it was trivial, but we will see that in
many cases we need to resort to iterative solution algorithms or other numerical optimization
techniques, as described in Chapter 4. The example also illustrates a significant problem
with maximum-likelihood learning in general: when the data set is small enough that some
events have not yet been observed—for instance, no cherry candies—the maximum likelihood
hypothesis assigns zero probability to those events. Various tricks are used to avoid this
problem, such as initializing the counts for each event to 1 instead of zero.

Let us look at another example. Suppose this new candy manufacturer wants to give a
little hint to the consumer and uses candy wrappers colored red and green. The Wrapper for
each candy is selected probabilistically, according to some unknown conditional distribution,
depending on the flavor. The corresponding probability model is shown in Figure 20.2(b).
Notice that it has three parameters: θ, θ1, and θ2. With these parameters, the likelihood of
seeing, say, a cherry candy in a green wrapper can be obtained from the standard semantics
for Bayesian networks (page 495):

P (Flavor = cherry,Wrapper = green|hθ,θ1,θ2)

= P (Flavor = cherry|hθ,θ1,θ2)P (Wrapper = green|Flavor = cherry, hθ,θ1,θ2)

= θ · (1− θ1) .

Now, we unwrap N candies, of which c are cherries and ` are limes. The wrapper counts are
as follows: rc of the cherries have red wrappers and gc have green, while r` of the limes have
red and g` have green. The likelihood of the data is given by

P (d|hθ,θ1,θ2) = θc(1− θ)` · θrc
1 (1− θ1)

gc · θr`
2 (1− θ2)

g` .

This looks pretty horrible, but taking logarithms helps:

L = [c log θ + ` log(1− θ)] + [rc log θ1 + gc log(1− θ1)] + [r` log θ2 + g` log(1− θ2)] .

The benefit of taking logs is clear: the log likelihood is the sum of three terms, each of which
contains a single parameter. When we take derivatives with respect to each parameter and set
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them to zero, we get three independent equations, each containing just one parameter:
∂L
∂θ = c

θ − `
1−θ = 0 ⇒ θ = c

c+`
∂L
∂θ1

= rc

θ1
− gc

1−θ1
= 0 ⇒ θ1 = rc

rc+gc
∂L
∂θ2

= r`

θ2
− g`

1−θ2
= 0 ⇒ θ2 = r`

r`+g`
.

The solution for θ is the same as before. The solution for θ1, the probability that a cherry
candy has a red wrapper, is the observed fraction of cherry candies with red wrappers, and
similarly for θ2.

These results are very comforting, and it is easy to see that they can be extended to any
Bayesian network whose conditional probabilities are represented as tables. The most impor-
tant point is that, with complete data, the maximum-likelihood parameter learning problem
for a Bayesian network decomposes into separate learning problems, one for each parame-
ter.3 The second point is that the parameter values for a variable, given its parents, are just the
observed frequencies of the variable values for each setting of the parent values. As before,
we must be careful to avoid zeroes when the data set is small.

Naive Bayes models

Probably the most common Bayesian network model used in machine learning is the naive
Bayes model. In this model, the “class” variable C (which is to be predicted) is the root
and the “attribute” variables Xi are the leaves. The model is “naive” because it assumes that
the attributes are conditionally independent of each other, given the class. (The model in
Figure 20.2(b) is a naive Bayes model with just one attribute.) Assuming Boolean variables,
the parameters are

θ = P (C = true), θi1 =P (Xi = true|C = true), θi2 =P (Xi = true|C = false).

The maximum-likelihood parameter values are found in exactly the same way as for Fig-
ure 20.2(b). Once the model has been trained in this way, it can be used to classify new exam-
ples for which the class variable C is unobserved. With observed attribute values x1, . . . , xn,
the probability of each class is given by

P(C|x1, . . . , xn) = α P(C)
∏

i

P(xi|C) .

A deterministic prediction can be obtained by choosing the most likely class. Figure 20.3
shows the learning curve for this method when it is applied to the restaurant problem from
Chapter 18. The method learns fairly well but not as well as decision-tree learning; this is
presumably because the true hypothesis—which is a decision tree—is not representable ex-
actly using a naive Bayes model. Naive Bayes learning turns out to do surprisingly well in a
wide range of applications; the boosted version (Exercise 20.5) is one of the most effective
general-purpose learning algorithms. Naive Bayes learning scales well to very large prob-
lems: with n Boolean attributes, there are just 2n + 1 parameters, and no search is required
to find hML, the maximum-likelihood naive Bayes hypothesis. Finally, naive Bayes learning
has no difficulty with noisy data and can give probabilistic predictions when appropriate.

3 See Exercise 20.7 for the nontabulated case, where each parameter affects several conditional probabilities.
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Figure 20.3 The learning curve for naive Bayes learning applied to the restaurant problem
from Chapter 18; the learning curve for decision-tree learning is shown for comparison.

Maximum-likelihood parameter learning: Continuous models

Continuous probability models such as the linear-Gaussian model were introduced in Sec-
tion 14.3. Because continuous variables are ubiquitous in real-world applications, it is im-
portant to know how to learn continuous models from data. The principles for maximum-
likelihood learning are identical to those of the discrete case.

Let us begin with a very simple case: learning the parameters of a Gaussian density
function on a single variable. That is, the data are generated as follows:

P (x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

The parameters of this model are the mean µ and the standard deviation σ. (Notice that the
normalizing “constant” depends on σ, so we cannot ignore it.) Let the observed values be
x1, . . . , xN . Then the log likelihood is

L =
N
∑

j =1

log
1√
2πσ

e−
(xj−µ)2

2σ2 = N(− log
√

2π − log σ)−
N
∑

j =1

(xj − µ)2

2σ2
.

Setting the derivatives to zero as usual, we obtain

∂L
∂µ = − 1

σ2

∑N
j=1(xj − µ) = 0 ⇒ µ =

∑

j
xj

N

∂L
∂σ = −N

σ + 1
σ3

∑N
j=1(xj − µ)2 = 0 ⇒ σ =

√

∑

j
(xj−µ)2

N .
(20.4)

That is, the maximum-likelihood value of the mean is the sample average and the maximum-
likelihood value of the standard deviation is the square root of the sample variance. Again,
these are comforting results that confirm “commonsense” practice.

Now consider a linear Gaussian model with one continuous parent X and a continuous
child Y . As explained on page 502, Y has a Gaussian distribution whose mean depends
linearly on the value of X and whose standard deviation is fixed. To learn the conditional
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Figure 20.4 (a) A linear Gaussian model described as y = θ1x + θ2 plus Gaussian noise
with fixed variance. (b) A set of 50 data points generated from this model.

distribution P (Y |X), we can maximize the conditional likelihood

P (y|x) =
1√
2πσ

e−
(y−(θ1x+θ2))2

2σ2 . (20.5)

Here, the parameters are θ1, θ2, and σ. The data are a collection of (xj , yj) pairs, as illustrated
in Figure 20.4. Using the usual methods (Exercise 20.6), we can find the maximum-likelihood
values of the parameters. Here, we want to make a different point. If we consider just the
parameters θ1 and θ2 that define the linear relationship between x and y, it becomes clear that
maximizing the log likelihood with respect to these parameters is the same as minimizing the
numerator in the exponent of Equation (20.5):

E =
N
∑

j =1

(yj − (θ1xj + θ2))
2 .

The quantity (yj − (θ1xj + θ2)) is the error for (xj, yj)—that is, the difference between theERROR

actual value yj and the predicted value (θ1xj +θ2)—so E is the well-known sum of squared
errors. This is the quantity that is minimized by the standard linear regression procedure.SUM OF SQUARED

ERRORS

LINEAR REGRESSION Now we can understand why: minimizing the sum of squared errors gives the maximum-
likelihood straight-line model, provided that the data are generated with Gaussian noise of
fixed variance.

Bayesian parameter learning

Maximum-likelihood learning gives rise to some very simple procedures, but it has some
serious deficiencies with small data sets. For example, after seeing one cherry candy, the
maximum-likelihood hypothesis is that the bag is 100% cherry (i.e., θ = 1.0). Unless one’s
hypothesis prior is that bags must be either all cherry or all lime, this is not a reasonable
conclusion. The Bayesian approach to parameter learning places a hypothesis prior over the
possible values of the parameters and updates this distribution as data arrive.
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Figure 20.5 Examples of the beta[a, b] distribution for different values of [a, b].

The candy example in Figure 20.2(a) has one parameter, θ: the probability that a ran-
domly selected piece of candy is cherry flavored. In the Bayesian view, θ is the (unknown)
value of a random variable Θ; the hypothesis prior is just the prior distribution P(Θ). Thus,
P (Θ= θ) is the prior probability that the bag has a fraction θ of cherry candies.

If the parameter θ can be any value between 0 and 1, then P(Θ) must be a continuous
distribution that is nonzero only between 0 and 1 and that integrates to 1. The uniform density
P (θ) = U [0, 1](θ) is one candidate. (See Chapter 13.) It turns out that the uniform density
is a member of the family of beta distributions. Each beta distribution is defined by twoBETA DISTRIBUTIONS

hyperparameters4 a and b such thatHYPERPARAMETER

beta[a, b](θ) = α θa−1(1− θ)b−1 , (20.6)

for θ in the range [0, 1]. The normalization constant α depends on a and b. (See Exer-
cise 20.8.) Figure 20.5 shows what the distribution looks like for various values of a and b.
The mean value of the distribution is a/(a + b), so larger values of a suggest a belief that Θ
is closer to 1 than to 0. Larger values of a + b make the distribution more peaked, suggest-
ing greater certainty about the value of Θ. Thus, the beta family provides a useful range of
possibilities for the hypothesis prior.

Besides its flexibility, the beta family has another wonderful property: if Θ has a prior
beta[a, b], then, after a data point is observed, the posterior distribution for Θ is also a beta
distribution. The beta family is called the conjugate prior for the family of distributions forCONJUGATE PRIOR

a Boolean variable.5 Let’s see how this works. Suppose we observe a cherry candy; then

P (θ|D1 = cherry) = α P (D1 = cherry|θ)P (θ)

= α′ θ · beta[a, b](θ) = α′ θ · θa−1(1− θ)b−1

= α′ θa(1− θ)b−1 = beta[a + 1, b](θ) .

4 They are called hyperparameters because they parameterize a distribution over θ, which is itself a parameter.
5 Other conjugate priors include the Dirichlet family for the parameters of a discrete multivalued distribution
and the Normal–Wishart family for the parameters of a Gaussian distribution. See Bernardo and Smith (1994).
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Thus, after seeing a cherry candy, we simply increment the a parameter to get the posterior;
similarly, after seeing a lime candy, we increment the b parameter. Thus, we can view the a
and b hyperparameters as virtual counts, in the sense that a prior beta[a, b] behaves exactlyVIRTUAL COUNTS

as if we had started out with a uniform prior beta[1, 1] and seen a − 1 actual cherry candies
and b− 1 actual lime candies.

By examining a sequence of beta distributions for increasing values of a and b, keeping
the proportions fixed, we can see vividly how the posterior distribution over the parameter Θ
changes as data arrive. For example, suppose the actual bag of candy is 75% cherry. Fig-
ure 20.5(b) shows the sequence beta[3, 1], beta[6, 2], beta[30, 10]. Clearly, the distribution
is converging to a narrow peak around the true value of Θ. For large data sets, then, Bayesian
learning (at least in this case) converges to give the same results as maximum-likelihood
learning.

The network in Figure 20.2(b) has three parameters, θ, θ1, and θ2, where θ1 is the
probability of a red wrapper on a cherry candy and θ2 is the probability of a red wrapper on a
lime candy. The Bayesian hypothesis prior must cover all three parameters—that is, we need
to specify P(Θ,Θ1,Θ2). Usually, we assume parameter independence:PARAMETER

INDEPENDENCE

P(Θ,Θ1,Θ2) = P(Θ)P(Θ1)P(Θ2) .

With this assumption, each parameter can have its own beta distribution that is updated sep-
arately as data arrive.

Once we have the idea that unknown parameters can be represented by random variables
such as Θ, it is natural to incorporate them into the Bayesian network itself. To do this, we
also need to make copies of the variables describing each instance. For example, if we have
observed three candies then we need Flavor 1, Flavor2, Flavor3 and Wrapper1, Wrapper2,
Wrapper3. The parameter variable Θ determines the probability of each Flavor i variable:

P (Flavor i = cherry|Θ= θ) = θ .

Similarly, the wrapper probabilities depend on Θ1 and Θ2, For example,

P (Wrapper i = red |Flavor i = cherry,Θ1 = θ1) = θ1 .

Now, the entire Bayesian learning process can be formulated as an inference problem in a
suitably constructed Bayes net, as shown in Figure 20.6. Prediction for a new instance is
done simply by adding new instance variables to the network, some of which are queried.
This formulation of learning and prediction makes it clear that Bayesian learning requires no
extra “principles of learning.” Furthermore, there is, in essence, just one learning algorithm,
i.e., the inference algorithm for Bayesian networks.

Learning Bayes net structures

So far, we have assumed that the structure of the Bayes net is given and we are just trying to
learn the parameters. The structure of the network represents basic causal knowledge about
the domain that is often easy for an expert, or even a naive user, to supply. In some cases,
however, the causal model may be unavailable or subject to dispute—for example, certain
corporations have long claimed that smoking does not cause cancer—so it is important to
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Flavor1


Wrapper1


Flavor2


Wrapper2


Flavor3


Wrapper3


Θ


Θ1 Θ2

Figure 20.6 A Bayesian network that corresponds to a Bayesian learning process. Poste-
rior distributions for the parameter variables Θ, Θ1, and Θ2 can be inferred from their prior
distributions and the evidence in the Flavor i and Wrapper i variables.

understand how the structure of a Bayes net can be learned from data. At present, structural
learning algorithms are in their infancy, so we will give only a brief sketch of the main ideas.

The most obvious approach is to search for a good model. We can start with a model
containing no links and begin adding parents for each node, fitting the parameters with the
methods we have just covered and measuring the accuracy of the resulting model. Alterna-
tively, we can start with an initial guess at the structure and use hill-climbing or simulated
annealing search to make modifications, retuning the parameters after each change in the
structure. Modifications can include reversing, adding, or deleting arcs. We must not in-
troduce cycles in the process, so many algorithms assume that an ordering is given for the
variables, and that a node can have parents only among those nodes that come earlier in the
ordering (just as in the construction process Chapter 14). For full generality, we also need to
search over possible orderings.

There are two alternative methods for deciding when a good structure has been found.
The first is to test whether the conditional independence assertions implicit in the structure are
actually satisfied in the data. For example, the use of a naive Bayes model for the restaurant
problem assumes that

P(Fri/Sat ,Bar |WillWait) = P(Fri/Sat |WillWait)P(Bar |WillWait)

and we can check in the data that the same equation holds between the corresponding condi-
tional frequencies. Now, even if the structure describes the true causal nature of the domain,
statistical fluctuations in the data set mean that the equation will never be satisfied exactly,
so we need to perform a suitable statistical test to see if there is sufficient evidence that the
independence hypothesis is violated. The complexity of the resulting network will depend
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on the threshold used for this test—the stricter the independence test, the more links will be
added and the greater the danger of overfitting.

An approach more consistent with the ideas in this chapter is to the degree to which
the proposed model explains the data (in a probabilistic sense). We must be careful how we
measure this, however. If we just try to find the maximum-likelihood hypothesis, we will end
up with a fully connected network, because adding more parents to a node cannot decrease
the likelihood (Exercise 20.9). We are forced to penalize model complexity in some way.
The MAP (or MDL) approach simply subtracts a penalty from the likelihood of each structure
(after parameter tuning) before comparing different structures. The Bayesian approach places
a joint prior over structures and parameters. There are usually far too many structures to
sum over (superexponential in the number of variables), so most practitioners use MCMC to
sample over structures.

Penalizing complexity (whether by MAP or Bayesian methods) introduces an important
connection between the optimal structure and the nature of the representation for the condi-
tional distributions in the network. With tabular distributions, the complexity penalty for a
node’s distribution grows exponentially with the number of parents, but with, say, noisy-OR
distributions, it grows only linearly. This means that learning with noisy-OR (or other com-
pactly parameterized) models tends to produce learned structures with more parents than does
learning with tabular distributions.

20.3 LEARNING WITH HIDDEN VARIABLES: THE EM ALGORITHM

The preceding section dealt with the fully observable case. Many real-world problems have
hidden variables (sometimes called latent variables) which are not observable in the dataLATENT VARIABLES

that are available for learning. For example, medical records often include the observed
symptoms, the treatment applied, and perhaps the outcome of the treatment, but they sel-
dom contain a direct observation of the disease itself!6 One might ask, “If the disease is
not observed, why not construct a model without it?” The answer appears in Figure 20.7,
which shows a small, fictitious diagnostic model for heart disease. There are three observ-
able predisposing factors and three observable symptoms (which are too depressing to name).
Assume that each variable has three possible values (e.g., none , moderate, and severe). Re-
moving the hidden variable from the network in (a) yields the network in (b); the total number
of parameters increases from 78 to 708. Thus, latent variables can dramatically reduce the
number of parameters required to specify a Bayesian network. This, in turn, can dramatically
reduce the amount of data needed to learn the parameters.

Hidden variables are important, but they do complicate the learning problem. In Fig-
ure 20.7(a), for example, it is not obvious how to learn the conditional distribution for
HeartDisease, given its parents, because we do not know the value of HeartDisease in each
case; the same problem arises in learning the distributions for the symptoms. This section

6 Some records contain the diagnosis suggested by the physician, but this is a causal consequence of the symp-
toms, which are in turn caused by the disease.
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Smoking Diet Exercise

Symptom1 Symptom2 Symptom3

(a) (b)

HeartDisease

Smoking Diet Exercise

Symptom1 Symptom2 Symptom3

2 2 2

54

6 6 6

2 2 2

54 162 486

Figure 20.7 (a) A simple diagnostic network for heart disease, which is assumed to be
a hidden variable. Each variable has three possible values and is labeled with the number
of independent parameters in its conditional distribution; the total number is 78. (b) The
equivalent network with HeartDisease removed. Note that the symptom variables are no
longer conditionally independent given their parents. This network requires 708 parameters.

describes an algorithm called expectation–maximization, or EM, that solves this problemEXPECTATION–
MAXIMIZATION

in a very general way. We will show three examples and then provide a general description.
The algorithm seems like magic at first, but once the intuition has been developed, one can
find applications for EM in a huge range of learning problems.

Unsupervised clustering: Learning mixtures of Gaussians

Unsupervised clustering is the problem of discerning multiple categories in a collection ofUNSUPERVISED
CLUSTERING

objects. The problem is unsupervised because the category labels are not given. For example,
suppose we record the spectra of a hundred thousand stars; are there different types of stars
revealed by the spectra, and, if so, how many and what are their characteristics? We are all
familiar with terms such as “red giant” and “white dwarf,” but the stars do not carry these
labels on their hats—astronomers had to perform unsupervised clustering to identify these
categories. Other examples include the identification of species, genera, orders, and so on in
the Linnæan taxonomy of organisms and the creation of natural kinds to categorize ordinary
objects (see Chapter 10).

Unsupervised clustering begins with data. Figure 20.8(a) shows 500 data points, each of
which specifies the values of two continuous attributes. The data points might correspond to
stars, and the attributes might correspond to spectral intensities at two particular frequencies.
Next, we need to understand what kind of probability distribution might have generated the
data. Clustering presumes that the data are generated from a mixture distribution, P . Such aMIXTURE

DISTRIBUTION

distribution has k components, each of which is a distribution in its own right. A data point isCOMPONENT

generated by first choosing a component and then generating a sample from that component.
Let the random variable C denote the component, with values 1, . . . , k; then the mixture
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Figure 20.8 (a) 500 data points in two dimensions, suggesting the presence of three clus-
ters. (b) A Gaussian mixture model with three components; the weights (left-to-right) are 0.2,
0.3, and 0.5. The data in (a) were generated from this model. (c) The model reconstructed by
EM from the data in (b).

distribution is given by

P (x) =
k
∑

i =1

P (C = i) P (x|C = i) ,

where x refers to the values of the attributes for a data point. For continuous data, a natural
choice for the component distributions is the multivariate Gaussian, which gives the so-called
mixture of Gaussians family of distributions. The parameters of a mixture of Gaussians areMIXTURE OF

GAUSSIANS

wi = P (C = i) (the weight of each component), µi (the mean of each component), and Σi

(the covariance of each component). Figure 20.8(b) shows a mixture of three Gaussians; this
mixture is in fact the source of the data in (a).

The unsupervised clustering problem, then, is to recover a mixture model like the one in
Figure 20.8(b) from raw data like that in Figure 20.8(a). Clearly, if we knew which component
generated each data point, then it would be easy to recover the component Gaussians: we
could just select all the data points from a given component and then apply (a multivariate
version of) Equation (20.4) for fitting the parameters of a Gaussian to a set of data. On
the other hand, if we knew the parameters of each component, then we could, at least in a
probabilistic sense, assign each data point to a component. The problem is that we know
neither the assignments nor the parameters.

The basic idea of EM in this context is to pretend that we know the the parameters of the
model and then to infer the probability that each data point belongs to each component. After
that, we refit the components to the data, where each component is fitted to the entire data set
with each point weighted by the probability that it belongs to that component. The process
iterates until convergence. Essentially, we are “completing” the data by inferring probability
distributions over the hidden variables—which component each data point belongs to—based
on the current model. For the mixture of Gaussians, we initialize the mixture model parame-
ters arbitrarily and then iterate the following two steps:
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1. E-step: Compute the probabilities pij = P (C = i|xj), the probability that datum xj was
generated by component i. By Bayes’ rule, we have pij =αP (xj |C = i)P (C = i). The
term P (xj |C = i) is just the probability at xj of the ith Gaussian, and the term P (C = i)
is just the weight parameter for the ith Gaussian. Define pi =

∑

j pij .

2. M-step: Compute the new mean, covariance, and component weights as follows:

µi ←
∑

j

pijxj/pi

Σi ←
∑

j

pijxjx>j /pi

wi ← pi .

The E-step, or expectation step, can be viewed as computing the expected values pij of the
hidden indicator variables Zij , where Zij is 1 if datum xj was generated by the ith compo-INDICATOR VARIABLE

nent and 0 otherwise. The M-step, or maximization step, finds the new values of the param-
eters that maximize the log likelihood of the data, given the expected values of the hidden
indicator variables.

The final model that EM learns when it is applied to the data in Figure 20.8(a) is shown
in Figure 20.8(c); it is virtually indistinguishable from the original model from which the
data were generated. Figure 20.9(a) plots the log likelihood of the data according to the
current model as EM progresses. There are two points to notice. First, the log likelihood
for the final learned model slightly exceeds that of the original model, from which the data
were generated. This might seem surprising, but it simply reflects the fact that the data were
generated randomly and might not provide an exact reflection of the underlying model. The
second point is that EM increases the log likelihood of the data at every iteration. This fact
can be proved in general. Furthermore, under certain conditions, EM can be proven to reach
a local maximum in likelihood. (In rare cases, it could reach a saddle point or even a local
minimum.) In this sense, EM resembles a gradient-based hill-climbing algorithm, but notice
that it has no “step size” parameter!

Things do not always go as well as Figure 20.9(a) might suggest. It can happen, for
example, that one Gaussian component shrinks so that it covers just a single data point. Then
its variance will go to zero and its likelihood will go to infinity! Another problem is that
two components can “merge,” acquiring identical means and variances and sharing their data
points. These kinds of degenerate local maxima are serious problems, especially in high
dimensions. One solution is to place priors on the model parameters and to apply the MAP
version of EM. Another is to restart a component with new random parameters if it gets
too small or too close to another component. It also helps to initialize the parameters with
reasonable values.

Learning Bayesian networks with hidden variables

To learn a Bayesian network with hidden variables, we apply the same insights that worked
for mixtures of Gaussians. Figure 20.10 represents a situation in which there are two bags of
candies that have been mixed together. Candies are described by three features: in addition
to the Flavor and the Wrapper , some candies have a Hole in the middle and some do not.
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Figure 20.9 Graphs showing the log-likelihood of the data, L, as a function of the EM
iteration. The horizontal line shows the log-likelihood according to the true model. (a)
Graph for the Gaussian mixture model in Figure 20.8. (b) Graph for the Bayesian network in
Figure 20.10(a).
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Figure 20.10 (a) A mixture model for candy. The proportions of different flavors, wrap-
pers, and numbers of holes depend on the bag, which is not observed. (b) Bayesian network
for a Gaussian mixture. The mean and covariance of the observable variables X depend on
the component C.

The distribution of candies in each bag is described by a naive Bayes model: the features
are independent, given the bag, but the conditional probability distribution for each feature
depends on the bag. The parameters are as follows: θ is the prior probability that a candy
comes from Bag 1; θF1 and θF2 are the probabilities that the flavor is cherry, given that the
candy comes from Bag 1 and Bag 2 respectively; θW1 and θW2 give the probabilities that the
wrapper is red; and θH1 and θH2 give the probabilities that the candy has a hole. Notice that



Section 20.3. Learning with Hidden Variables: The EM Algorithm 729

the overall model is a mixture model. (In fact, we can also model the mixture of Gaussians
as a Bayesian network, as shown in Figure 20.10(b).) In the figure, the bag is is a hidden
variable because, once the candies have been mixed together, we no longer know which bag
each candy came from. In such a case, can we recover the descriptions of the two bags by
observing candies from the mixture?

Let us work through an iteration of EM for this problem. First, let’s look at the data.
We generated 1000 samples from a model whose true parameters are

θ = 0.5, θF1 = θW1 = θH1 = 0.8, θF2 = θW2 = θH2 = 0.3 . (20.7)

That is, the candies are equally likely to come from either bag; the first is mostly cherries
with red wrappers and holes; the second is mostly limes with green wrappers and no holes.
The counts for the eight possible kinds of candy are as follows:

W = red W = green

H = 1 H = 0 H = 1 H = 0

F = cherry 273 93 104 90
F = lime 79 100 94 167

We start by initializing the parameters. For numerical simplicity, we will choose7

θ(0) = 0.6, θ
(0)
F1 = θ

(0)
W1 = θ

(0)
H1 = 0.6, θ

(0)
F2 = θ

(0)
W2 = θ

(0)
H2 =0.4 . (20.8)

First, let us work on the θ parameter. In the fully observable case, we would estimate this
directly from the observed counts of candies from bags 1 and 2. Because the bag is a hidden
variable, we calculate the expected counts instead. The expected count N̂(Bag = 1) is the
sum, over all candies, of the probability that the candy came from bag 1:

θ(1) = N̂(Bag =1)/N =
N
∑

j = 1

P (Bag = 1|flavor j ,wrapper j , holesj)/N .

These probabilities can be computed by any inference algorithm for Bayesian networks. For
a naive Bayes model such as the one in our example, we can do the inference “by hand,”
using Bayes’ rule and applying conditional independence:

θ(1) =
1

N

N
∑

j = 1

P (flavorj |Bag =1)P (wrapperj |Bag =1)P (holesj |Bag =1)P (Bag = 1)
∑

i P (flavorj |Bag = i)P (wrapperj |Bag = i)P (holesj |Bag = i)P (Bag = i)
.

(Notice that the normalizing constant also depends on the parameters.) Applying this formula
to, say, the 273 red-wrapped cherry candies with holes, we get a contribution of

273

1000
· θ

(0)
F1θ

(0)
W1θ

(0)
H1θ

(0)

θ
(0)
F1θ

(0)
W1θ

(0)
H1θ

(0) + θ
(0)
F2θ

(0)
W2θ

(0)
H2(1− θ(0))

≈ 0.22797 .

Continuing with the other seven kinds of candy in the table of counts, we obtain θ(1) =0.6124.

7 It is better in practice to choose them randomly, to avoid local maxima due to symmetry.
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Figure 20.11 An unrolled dynamic Bayesian network that represents a hidden Markov
model (repeat of Figure 15.14).

Now let us consider the other parameters, such as θF1. In the fully observable case, we
would estimate this directly from the observed counts of cherry and lime candies from bag 1.
The expected count of cherry candies from bag 1 is given by

∑

j:Flavorj = cherry

P (Bag = 1|Flavor j = cherry,wrapper j , holesj) .

Again, these probabilities can be calculated by any Bayes net algorithm. Completing this
process, we obtain the new values of all the parameters:

θ(1) =0.6124, θ
(1)
F1 = 0.6684, θ

(1)
W1 = 0.6483, θ

(1)
H1 = 0.6558,

θ
(1)
F2 =0.3887, θ

(1)
W2 =0.3817, θ

(1)
H2 = 0.3827 .

(20.9)

The log likelihood of the data increases from about −2044 initially to about −2021 after the
first iteration, as shown in Figure 20.9(b). That is, the update improves the likelihood itself
by a factor of about e23 ≈ 1010. By the tenth iteration, the learned model is a better fit
than the original model (L= − 1982.214). Thereafter, progress becomes very slow. This
is not uncommon with EM, and many practical systems combine EM with a gradient-based
algorithm such as Newton–Raphson (see Chapter 4) for the last phase of learning.

The general lesson from this example is that the parameter updates for Bayesian net-
work learning with hidden variables are directly available from the results of inference on
each example. Moreover, only local posterior probabilities are needed for each parameter.
For the general case in which we are learning the conditional probability parameters for each
variable Xi, given its parents —that is, θijk =P (Xi = xij |Pai = paik)—the update is given
by the normalized expected counts as follows:

θijk ← N̂(Xi =xij ,Pai = paik)/N̂(Pai = paik) .

The expected counts are obtained by summing over the examples, computing the probabilities
P (Xi = xij ,Pai = paik) for each by using any Bayes net inference algorithm. For the exact
algorithms—including variable elimination—all these probabilities are obtainable directly as
a by-product of standard inference, with no need for extra computations specific to learning.
Moreover, the information needed for learning is available locally for each parameter.
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Learning hidden Markov models

Our final application of EM involves learning the transition probabilities in hidden Markov
models (HMMs). Recall from Chapter 15 that a hidden Markov model can be represented by
a dynamic Bayes net with a single discrete state variable, as illustrated in Figure 20.11. Each
data point consists of an observation sequence of finite length, so the problem is to learn the
transition probabilities from a set of observation sequences (or possibly from just one long
sequence).

We have already worked out how to learn Bayes nets, but there is one complication:
in Bayes nets, each parameter is distinct; in a hidden Markov model, on the other hand, the
individual transition probabilities from state i to state j at time t, θijt =P (Xt+1 = j|Xt = i),
are repeated across time—that is, θijt = θij for all t. To estimate the transition probability
from state i to state j, we simply calculate the expected proportion of times that the system
undergoes a transition to state j when in state i:

θij ←
∑

t

N̂(Xt+1 = j,Xt = i)/
∑

t

N̂(Xt= i) .

Again, the expected counts are computed by any HMM inference algorithm. The forward–
backward algorithm shown in Figure 15.4 can be modified very easily to compute the neces-
sary probabilities. One important point is that the probabilities required are those obtained by
smoothing rather than filtering; that is, we need to pay attention to subsequent evidence in
estimating the probability that a particular transition occurred. As we said in Chapter 15, the
evidence in a murder case is usually obtained after the crime (i.e., the transition from state i
to state j) occurs.

The general form of the EM algorithm

We have seen several instances of the EM algorithm. Each involves computing expected
values of hidden variables for each example and then recomputing the parameters, using the
expected values as if they were observed values. Let x be all the observed values in all the
examples, let Z denote all the hidden variables for all the examples, and let θ be all the
parameters for the probability model. Then the EM algorithm is

θ(i+1) = argmax
�

∑

z
P (Z = z|x,θ(i))L(x, Z = z|θ) .

This equation is the EM algorithm in a nutshell. The E-step is the computation of the sum-
mation, which is the expectation of the log likelihood of the “completed” data with respect
to the distribution P (Z = z|x,θ(i)), which is the posterior over the hidden variables, given
the data. The M-step is the maximization of this expected log likelihood with respect to the
parameters. For mixtures of Gaussians, the hidden variables are the Zijs, where Zij is 1 if
example j was generated by component i. For Bayes nets, the hidden variables are the values
of the unobserved variables for each example. For HMMs, the hidden variables are the i→ j
transitions. Starting from the general form, it is possible to derive an EM algorithm for a
specific application once the appropriate hidden variables have been identified.

As soon as we understand the general idea of EM, it becomes easy to derive all sorts
of variants and improvements. For example, in many cases the E-step—the computation of
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posteriors over the hidden variables—is intractable, as in large Bayes nets. It turns out that
one can use an approximate E-step and still obtain an effective learning algorithm. With a
sampling algorithm such as MCMC (see Section 14.5), the learning process is very intuitive:
each state (configuration of hidden and observed variables) visited by MCMC is treated ex-
actly as if it were a complete observation. Thus, the parameters can be updated directly after
each MCMC transition. Other forms of approximate inference, such as variational and loopy
methods, have also proven effective for learning very large networks.

Learning Bayes net structures with hidden variables

In Section 20.2, we discussed the problem of learning Bayes net structures with complete
data. When hidden variables are taken into consideration, things get more difficult. In the
simplest case, the hidden variables are listed along with the observed variables; although
their values are not observed, the learning algorithm is told that they exist and must find
a place for them in the network structure. For example, an algorithm might try to learn
the structure shown in Figure 20.7(a), given the information that HeartDisease (a three-
valued variable) should be included in the model. If the learning algorithm is not told this
information, then there are two choices: either pretend that the data is really complete—which
forces the algorithm to learn the parameter-intensive model in Figure 20.7(b)—or invent new
hidden variables in order to simplify the model. The latter approach can be implemented by
including new modification choices in the structure search: in addition to modifying links,
the algorithm can add or delete a hidden variable or change its arity. Of course, the algorithm
will not know that the new variable it has invented is called HeartDisease; nor will it have
meaningful names for the values. Fortunately, newly invented hidden variables will usually be
connected to pre-existing variables, so a human expert can often inspect the local conditional
distributions involving the new variable and ascertain its meaning.

As in the complete-data case, pure maximum-likelihood structure learning will result in
a completely connected network (moreover, one with no hidden variables), so some form of
complexity penalty is required. We can also apply MCMC to approximate Bayesian learning.
For example, we can learn mixtures of Gaussians with an unknown number of components by
sampling over the number; the approximate posterior distribution for the number of Gaussians
is given by the sampling frequencies of the MCMC process.

So far, the process we have discussed has an outer loop that is a structural search pro-
cess and an inner loop that is a parametric optimization process. For the complete-data case,
the inner loop is very fast—just a matter of extracting conditional frequencies from the data
set. When there are hidden variables, the inner loop may involve many iterations of EM or a
gradient-based algorithm, and each iteration involves the calculation of posteriors in a Bayes
net, which is itself an NP-hard problem. To date, this approach has proved impractical for
learning complex models. One possible improvement is the so-called structural EM algo-STRUCTURAL EM

rithm, which operates in much the same way as ordinary (parametric) EM except that the
algorithm can update the structure as well as the parameters. Just as ordinary EM uses the
current parameters to compute the expected counts in the E-step and then applies those counts
in the M-step to choose new parameters, structural EM uses the current structure to compute
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expected counts and then applies those counts in the M-step to evaluate the likelihood for
potential new structures. (This contrasts with the outer-loop/inner-loop method, which com-
putes new expected counts for each potential structure.) In this way, structural EM may make
several structural alterations to the network without once recomputing the expected counts,
and is capable of learning nontrivial Bayes net structures. Nonetheless, much work remains
to be done before we can say that the structure learning problem is solved.

20.4 INSTANCE-BASED LEARNING

So far, our discussion of statistical learning has focused primarily on fitting the parameters of
a restricted family of probability models to an unrestricted data set. For example, unsuper-
vised clustering using mixtures of Gaussians assumes that the data are explained by the sum
a fixed number of Gaussian distributions. We call such methods parametric learning. Para-PARAMETRIC

LEARNING

metric learning methods are often simple and effective, but assuming a particular restricted
family of models often oversimplifies what’s happening in the real world, from where the
data come. Now, it is true when we have very little data, we cannot hope to learn a complex
and detailed model, but it seems silly to keep the hypothesis complexity fixed even when the
data set grows very large!

In contrast to parametric learning, nonparametric learning methods allow the hypoth-NONPARAMETRIC
LEARNING

esis complexity to grow with the data. The more data we have, the wigglier the hypothesis
can be. We will look at two very simple families of nonparametric instance-based learningINSTANCE-BASED

LEARNING

(or memory-based learning) methods, so called because they construct hypotheses directly
from the training instances themselves.

Nearest-neighbor models

The key idea of nearest-neighbor models is that the properties of any particular input point xNEAREST-NEIGHBOR

are likely to be similar to those of points in the neighborhood of x. For example, if we want to
do density estimation—that is, estimate the value of an unknown probability density at x—
then we can simply measure the density with which points are scattered in the neighborhood
of x. This sounds very simple, until we realize that we need to specify exactly what we mean
by “neighborhood.” If the neighborhood is too small, it won’t contain any data points; too
large, and it may include all the data points, resulting in a density estimate that is the same
everywhere. One solution is to define the neighborhood to be just big enough to include k
points, where k is large enough to ensure a meaningful estimate. For fixed k, the size of
the neighborhood varies—where data are sparse, the neighborhood is large, but where data
are dense, the neighborhood is small. Figure 20.12(a) shows an example for data scattered
in two dimensions. Figure 20.13 shows the results of k-nearest-neighbor density estimation
from these data with k = 3, 10, and 40 respectively. For k =3, the density estimate at any
point is based on only 3 neighboring points and is highly variable. For k = 40, the estimate
provides a good reconstruction of the true density shown in Figure 20.12(b). For k = 40, the
neighborhood becomes too large and structure of the data is altogether lost. In practice, using
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Figure 20.12 (a) A 128-point subsample of the data shown in Figure 20.8(a), together
with two query points and their 10-nearest-neighborhoods. (b) A 3-D plot of the mixture of
Gaussians from which the data were generated.
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Figure 20.13 Density estimation using k-nearest-neighbors, applied to the data in Fig-
ure 20.12(a), for k = 3, 10, and 40 respectively.

a value of k somewhere between 5 and 10 gives good results for most low-dimensional data
sets. A good value of k can also be chosen by using cross-validation.

To identify the nearest neighbors of a query point, we need a distance metric, D(x1, x2).
The two-dimensional example in Figure 20.12 uses Euclidean distance. This is inappropriate
when each dimension of the space is measuring something different—for example, height
and weight—because changing the scale of one dimension would change the set of nearest
neighbors. One solution is to standardize the scale for each dimension. To do this, we measure
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the standard deviation of each feature over the whole data set and express feature values as
multiples of the standard deviation for that feature. (This is a special case of the Mahalanobis
distance, which takes into account the covariance of the features as well.) Finally, for discreteMAHALANOBIS

DISTANCE

features we can use the Hamming distance, which defines D(x1, x2) to be the number ofHAMMING DISTANCE

features on which x1 and x2 differ.
Density estimates like those shown in Figure 20.13 define joint distributions over the

input space. Unlike a Bayesian network, however, an instance-based representation cannot
contain hidden variables, which means that we cannot perform unsupervised clustering as we
did with the mixture-of-Gaussians model. We can still use the density estimate to predict a
target value y given input feature values x by calculating P (y|x)= P (y, x)/P (x), provided
that the training data include values for the target feature.

It is also possible to use the nearest-neighbor idea for direct supervised learning. Given
a test example with input x, the output y =h(x) is obtained from the y-values of the k nearest
neighbors of x. In the discrete case, we can obtain a single prediction by majority vote. In the
continuous case, we can average the k values or do local linear regression, fitting a hyperplane
to the k points and predicting the value at x according to the hyperplane.

The k-nearest-neighbor learning algorithm is very simple to implement, requires little
in the way of tuning, and often performs quite well. It is a good thing to try first on a
new learning problem. For large data sets, however, we require an efficient mechanism for
finding the nearest neighbors of a query point x—simply calculating the distance to every
point would take far too long. A variety of ingenious methods have been proposed to make
this step efficient by preprocessing the training data. Unfortunately, most of these methods
do not scale well with the dimension of the space (i.e., the number of features).

High-dimensional spaces pose an additional problem, namely that nearest neighbors in
such spaces are usually a long way away! Consider a data set of size N in the d-dimensional
unit hypercube, and assume hypercubic neighborhoods of side b and volume bd. (The same
argument works with hyperspheres, but the formula for the volume of a hypersphere is more
complicated.) To contain k points, the average neighborhood must occupy a fraction k/N
of the entire volume, which is 1. Hence, bd = k/N , or b= (k/N)1/d. So far, so good. Now
let the number of features d be 100 and let k be 10 and N be 1,000,000. Then we have b ≈
0.89—that is, the neighborhood has to span almost the entire input space! This suggests that
nearest-neighbor methods cannot be trusted for high-dimensional data. In low dimensions
there is no problem; with d = 2 we have b = 0.003.

Kernel models

In a kernel model, we view each training instance as generating a little density function—aKERNEL MODEL

kernel function—of its own. The density estimate as a whole is just the normalized sum ofKERNEL FUNCTION

all the little kernel functions. A training instance at xi will generate a kernel function K(x, xi)
that assigns a probability to each point x in the space. Thus, the density estimate is

P (x) =
1

N

N
∑

i=1

K(x, xi) .
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Figure 20.14 Kernel density estimation for the data in Figure 20.12(a), using Gaussian
kernels with w =0.02, 0.07, and 0.20 respectively.

The kernel function normally depends only on the distance D(x, xi) from x to the instance xi.
The most popular kernel function is (of course) the Gaussian. For simplicity, we will assume
spherical Gaussians with standard deviation w along each axis, i.e.,

K(x, xi) =
1

(w2
√

2π)d
e−

D(x,xi)
2

2w2 ,

where d is the number of dimensions in x. We still have the problem of choosing a suitable
value for w; as before, making the neighborhood too small gives a very spiky estimate—see
Figure 20.14(a). In (b), a medium value of w gives a very good reconstruction. In (c), too
large a neighborhood results in losing the structure altogether. A good value of w can be
chosen by using cross-validation.

Supervised learning with kernels is done by taking a weighted combination of all the
predictions from the training instances. (Compare this with k-nearest-neighbor prediction,
which takes an unweighted combination of the nearest k instances.) The weight of the ith
instance for a query point x is given by the value of the kernel K(x, xi). For a discrete
prediction, we can take a weighted vote; for a continuous prediction, we can take weighted
average or a weighted linear regression. Notice that making predictions with kernels requires
looking at every training instance. It is possible to combine kernels with nearest-neighbor
indexing schemes to make weighted predictions from just the nearby instances.

20.5 NEURAL NETWORKS

A neuron is a cell in the brain whose principal function is the collection, processing, and
dissemination of electrical signals. Figure 1.2 on page 11 showed a schematic diagram of a
typical neuron. The brain’s information-processing capacity is thought to emerge primarily
from networks of such neurons. For this reason, some of the earliest AI work aimed to create
artificial neural networks. (Other names for the field include connectionism, parallel dis-NEURAL NETWORKS
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tributed processing, and neural computation.) Figure 20.15 shows a simple mathematical
model of the neuron devised by McCulloch and Pitts (1943). Roughly speaking, it “fires”
when a linear combination of its inputs exceeds some threshold. Since 1943, much more
detailed and realistic models have been developed, both for neurons and for larger systems
in the brain, leading to the modern field of computational neuroscience. On the other hand,COMPUTATIONAL

NEUROSCIENCE

researchers in AI and statistics became interested in the more abstract properties of neural
networks, such as their ability to perform distributed computation, to tolerate noisy inputs,
and to learn. Although we understand now that other kinds of systems—including Bayesian
networks—have these properties, neural networks remain one of the most popular and effec-
tive forms of learning system and are worthy of study in their own right.

Units in neural networks

Neural networks are composed of nodes or units (see Figure 20.15) connected by directedUNITS

links. A link from unit j to unit i serves to propagate the activation aj from j to i. Each linkLINKS

ACTIVATION also has a numeric weight Wj,i associated with it, which determines the strength and sign of
WEIGHT the connection. Each unit i first computes a weighted sum of its inputs:

ini =
n
∑

j =0

Wj,iaj .

Then it applies an activation function g to this sum to derive the output:ACTIVATION
FUNCTION

ai = g(ini) = g





n
∑

j =0

Wj,iaj



 . (20.10)

Notice that we have included a bias weight W0,i connected to a fixed input a0 = − 1. WeBIAS WEIGHT

will explain its role in a moment.
The activation function g is designed to meet two desiderata. First, we want the unit

to be “active” (near +1) when the “right” inputs are given, and “inactive” (near 0) when the
“wrong” inputs are given. Second, the activation needs to be nonlinear, otherwise the entire
neural network collapses into a simple linear function (see Exercise 20.17). Two choices for g

Output

Σ
Input

Links

Activation

Function

Input

Function

Output

Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

Figure 20.15 A simple mathematical model for a neuron. The unit’s output activation is
ai = g(

∑n

j = 0
Wj,iaj), where aj is the output activation of unit j and Wj,i is the weight on

the link from unit j to this unit.
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are shown in Figure 20.16: the threshold function and the sigmoid function (also known asTHRESHOLD

SIGMOID FUNCTION the logistic function). The sigmoid function has the advantage of being differentiable, which
LOGISTIC FUNCTION we will see later is important for the weight-learning algorithm. Notice that both functions

have a threshold (either hard or soft) at zero; the bias weight W0,i sets the actual threshold
for the unit, in the sense that the unit is activated when the weighted sum of “real” inputs
∑n

j =1 Wj,iaj (i.e., excluding the bias input) exceeds W0,i.

(a)
 (b)


+1 +1

iniini

g(ini)g(ini)

Figure 20.16 (a) The threshold activation function, which outputs 1 when the input is
positive and 0 otherwise. (Sometimes the sign function is used instead, which outputs ±1
depending on the sign of the input.) (b) The sigmoid function 1/(1 + e−x).

We can get a feel for the operation of individual units by comparing them with logic
gates. One of the original motivations for the design of individual units (McCulloch and
Pitts, 1943) was their ability to represent basic Boolean functions. Figure 20.17 shows how
the Boolean functions AND, OR, and NOT can be represented by threshold units with suitable
weights. This is important because it means we can use these units to build a network to
compute any Boolean function of the inputs.

AND


W0 = 1.5


W1 = 1


W2 = 1


OR


W2 = 1


W1 = 1


W0 = 0.5


NOT


W1 = 1


W0 = 0.5


Figure 20.17 Units with a threshold activation function can act as logic gates, given ap-
propriate input and bias weights.

Network structures

There are two main categories of neural network structures: acyclic or feed-forward net-
works and cyclic or recurrent networks. A feed-forward network represents a function ofFEED-FORWARD

NETWORKS
RECURRENT
NETWORKS its current input; thus, it has no internal state other than the weights themselves. A recurrent
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network, on the other hand, feeds its outputs back into its own inputs. This means that the
activation levels of the network form a dynamical system that may reach a stable state or ex-
hibit oscillations or even chaotic behavior. Moreover, the response of the network to a given
input depends on its initial state, which may depend on previous inputs. Hence, recurrent
networks (unlike feed-forward networks) can support short-term memory. This makes them
more interesting as models of the brain, but also more difficult to understand. This section
will concentrate on feed-forward networks; some pointers for further reading on recurrent
networks are given at the end of the chapter.

Let us look more closely into the assertion that a feed-forward network represents a
function of its inputs. Consider the simple network shown in Figure 20.18, which has two
input units, two hidden units, and an output unit. (To keep things simple, we have omittedHIDDEN UNITS

the bias units in this example.) Given an input vector x = (x1, x2), the activations of the input
units are set to (a1, a2)= (x1, x2) and the network computes

a5 = g(W3,5a3 + W4,5a4)

= g(W3,5g(W1,3a1 + W2,3a2) + W4,5g(W1,4a1 + W2,4a2)) . (20.11)

That is, by expressing the output of each hidden unit as a function of its inputs, we have shown
that output of the network as a whole, a5, is a function of the network’s inputs. Furthermore,
we see that the weights in the network act as parameters of this function; writing W for the
parameters, the network computes a function hW(x). By adjusting the weights, we change
the function that the network represents. This is how learning occurs in neural networks.

W
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3
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2,
4
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Figure 20.18 A very simple neural network with two inputs, one hidden layer of two units,
and one output.

A neural network can be used for classification or regression. For Boolean classification
with continuous outputs (e.g., with sigmoid units), it is traditional to have a single output unit,
with a value over 0.5 interpreted as one class and a value below 0.5 as the other. For k-way
classification, one could divide the single output unit’s range into k portions, but it is more
common to have k separate output units, with the value of each one representing the relative
likelihood of that class given the current input.

Feed-forward networks are usually arranged in layers, such that each unit receives inputLAYERS

only from units in the immediately preceding layer. In the next two subsections, we will look
at single layer networks, which have no hidden units, and multilayer networks, which have
one or more layers of hidden units.
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Figure 20.19 (a) A perceptron network consisting of three perceptron output units that
share five inputs. Looking at a particular output unit (say the second one, outlined in bold),
we see that the weights on its incoming links have no effect on the other output units. (b) A
graph of the output of a two-input perceptron unit with a sigmoid activation function.

Single layer feed-forward neural networks (perceptrons)

A network with all the inputs connected directly to the outputs is called a single-layer neural
network, or a perceptron network. Since each output unit is independent of the others—SINGLE-LAYER

NEURAL NETWORK

PERCEPTRON each weight affects only one of the outputs—we can limit our study to perceptrons with a
single output unit, as explained in Figure 20.19(a).

Let us begin by examining the hypothesis space that a perceptron can represent. With a
threshold activation function, we can view the perceptron as representing a Boolean function.
In addition to the elementary Boolean functions AND, OR, and NOT (Figure 20.17), a percep-
tron can represent some quite “complex” Boolean functions very compactly. For example,
the majority function, which outputs a 1 only if more than half of its n inputs are 1, can
be represented by a perceptron with each Wj = 1 and threshold W0 = n/2. A decision tree
would need O(2n) nodes to represent this function.

Unfortunately, there are many Boolean functions that the threshold perceptron cannot
represent. Looking at Equation (20.10), we see that the threshold perceptron returns 1 if and
only if the weighted sum of its inputs (including the bias) is positive:

n
∑

j =0

Wjxj > 0 or W · x > 0 .

Now, the equation W ·x = 0 defines a hyperplane in the input space, so the perceptron returns
1 if and only if the input is on one side of that hyperplane. For this reason, the threshold
perceptron is called a linear separator. Figure 20.20(a) and (b) show this hyperplane (aLINEAR SEPARATOR

line, in two dimensions) for the perceptron representations of the AND and OR functions of
two inputs. Black dots indicate a point in the input space where the value of the function
is 1, and white dots indicate a point where the value is 0. The perceptron can represent
these functions because there is some line that separates all the white dots from all the black
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Figure 20.20 Linear separability in threshold perceptrons. Black dots indicate a point in
the input space where the value of the function is 1, and white dots indicate a point where the
value is 0. The perceptron returns 1 on the region on the non-shaded side of the line. In (c),
no such line exists that correctly classifies the inputs.

dots. Such functions are called linearly separable. Figure 20.20(c) shows an example ofLINEARLY
SEPARABLE

a function that is not linearly separable—the XOR function. Clearly, there is no way for a
threshold perceptron to learn this function. In general, threshold perceptrons can represent
only linearly separable functions. These constitute just a small fraction of all functions;
Exercise 20.14 asks you to quantify this fraction. Sigmoid perceptrons are similarly limited,
in the sense that they represent only “soft” linear separators. (See Figure 20.19(b).)

Despite their limited expressive power, threshold perceptrons have some advantages.
In particular, there is a simple learning algorithm that will fit a threshold perceptron to any
linearly separable training set. Rather than present this algorithm, we will derive a closely
related algorithm for learning in sigmoid perceptrons.

The idea behind this algorithm, and indeed behind most algorithms for neural network
learning, is to adjust the weights of the network to minimize some measure of the error on
the training set. Thus, learning is formulated as an optimization search in weight space.8WEIGHT SPACE

The “classical” measure of error is the sum of squared errors, which we used for linear
regression on page 720. The squared error for a single training example with input x and true
output y is written as

E =
1

2
Err2 ≡ 1

2
(y − hW(x))2 ,

where hW(x) is the output of the perceptron on the example and T is the true output value.
We can use gradient descent to reduce the squared error by calculating the partial deriva-

tive of E with respect to each weight. We have
∂E

∂Wj
= Err × ∂Err

∂Wj

= Err × ∂

∂Wj
g



y −
n
∑

j =0

Wjxj





= −Err × g′(in)×xj ,

8 See Section 4.4 for general optimization techniques applicable to continuous spaces.
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where g′ is the derivative of the activation function.9 In the gradient descent algorithm, where
we want to reduce E, we update the weight as follows:

Wj ←Wj + α×Err × g′(in)×xj , (20.12)

where α is the learning rate. Intuitively, this makes a lot of sense. If the error Err = y −
hW(x) is positive, then the network output is too small and so the weights are increased for
the positive inputs and decreased for the negative inputs. The opposite happens when the
error is negative.10

The complete algorithm is shown in Figure 20.21. It runs the training examples through
the net one at a time, adjusting the weights slightly after each example to reduce the error.
Each cycle through the examples is called an epoch. Epochs are repeated until some stop-EPOCH

ping criterion is reached—typically, that the weight changes have become very small. Other
methods calculate the gradient for the whole training set by adding up all the gradient con-
tributions in Equation (20.12) before updating the weights. The stochastic gradient methodSTOCHASTIC

GRADIENT

selects examples randomly from the training set rather than cycling through them.

function PERCEPTRON-LEARNING(examples ,network ) returns a perceptron hypothesis
inputs: examples , a set of examples, each with input x = x1, . . . , xn and output y

network , a perceptron with weights Wj , j = 0 . . . n, and activation function g

repeat
for each e in examples do

in←
∑n

j = 0
Wj xj [e]

Err← y [e] − g(in)
Wj←Wj + α × Err × g ′(in) × xj [e]

until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS(network )

Figure 20.21 The gradient descent learning algorithm for perceptrons, assuming a differ-
entiable activation function g. For threshold perceptrons, the factor g ′(in) is omitted from the
weight update. NEURAL-NET-HYPOTHESIS returns a hypothesis that computes the network
output for any given example.

Figure 20.22 shows the learning curve for a perceptron on two different problems. On
the left, we show the curve for learning the majority function with 11 Boolean inputs (i.e.,
the function outputs a 1 if 6 or more inputs are 1). As we would expect, the perceptron learns
the function quite quickly, because the majority function is linearly separable. On the other
hand, the decision-tree learner makes no progress, because the majority function is very hard
(although not impossible) to represent as a decision tree. On the right, we have the restaurant

9 For the sigmoid, this derivative is given by g′ = g(1− g).
10 For threshold perceptrons, where g′(in) is undefined, the original perceptron learning rule developed by
Rosenblatt (1957) is identical to Equation (20.12) except that g′(in) is omitted. Since g′(in) is the same for
all weights, its omission changes only the magnitude and not the direction of the overall weight update for each
example.
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Figure 20.22 Comparing the performance of perceptrons and decision trees. (a) Percep-
trons are better at learning the majority function of 11 inputs. (b) Decision trees are better at
learning the WillWait predicate in the restaurant example.

example. The solution problem is easily represented as a decision tree, but is not linearly
separable. The best plane through the data correctly classifies only 65%.

So far, we have treated perceptrons as deterministic functions with possibly erroneous
outputs. It is also possible to interpret the output of a sigmoid perceptron as a probability—
specifically, the probability that the true output is 1 given the inputs. With this interpretation,
one can use the sigmoid as a canonical representation for conditional distributions in Bayesian
networks (see Section 14.3). One can also derive a learning rule using the standard method
of maximizing the (conditional) log likelihood of the data, as described earlier in this chapter.
Let’s see how this works.

Consider a single training example with true output value T , and let p be the probability
returned by the perceptron for this example. If T =1, the conditional probability of the
datum is p, and if T =0, the conditional probability of the datum is (1− p). Now we can use
a simple trick to write the log likelihood in a form that is differentiable. The trick is that a 0/1
variable in the exponent of an expression acts as an indicator variable: pT is p if T = 1 andINDICATOR VARIABLE

1 otherwise; similarly (1− p)(1−T ) is (1− p) if T = 0 and 1 otherwise. Hence, we can write
the log likelihood of the datum as

L = log pT (1− p)(1−T ) = T log p + (1− T ) log(1− p) . (20.13)

Thanks to the properties of the sigmoid function, the gradient reduces to a very simple for-
mula (Exercise 20.16):

∂L

∂Wj
= Err × aj .

Notice that the weight-update vector for maximum likelihood learning in sigmoid perceptrons
is essentially identical to the update vector for squared error minimization. Thus, we could
say that perceptrons have a probabilistic interpretation even when the learning rule is derived
from a deterministic viewpoint.
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Multilayer feed-forward neural networks

Now we will consider networks with hidden units. The most common case involves a single
hidden layer,11 as in Figure 20.24. The advantage of adding hidden layers is that it enlarges
the space of hypotheses that the network can represent. Think of each hidden unit as a percep-
tron that represents a soft threshold function in the input space, as shown in Figure 20.19(b).
Then, think of an output unit as as a soft-thresholded linear combination of several such func-
tions. For example, by adding two opposite-facing soft threshold functions and thresholding
the result, we can obtain a “ridge” function as shown in Figure 20.23(a). Combining two such
ridges at right angles to each other (i.e., combining the outputs from four hidden units), we
obtain a “bump” as shown in Figure 20.23(b).
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Figure 20.23 (a) The result of combining two opposite-facing soft threshold functions to
produce a ridge. (b) The result of combining two ridges to produce a bump.

With more hidden units, we can produce more bumps of different sizes in more places.
In fact, with a single, sufficiently large hidden layer, it is possible to represent any continuous
function of the inputs with arbitrary accuracy; with two layers, even discontinuous functions
can be represented.12 Unfortunately, for any particular network structure, it is harder to
characterize exactly which functions can be represented and which ones cannot.

Suppose we want to construct a hidden layer network for the restaurant problem. We
have 10 attributes describing each example, so we will need 10 input units. How many hidden
units are needed? In Figure 20.24, we show a network with four hidden units. This turns out
to be about right for this problem. The problem of choosing the right number of hidden units
in advance is still not well understood. (See page 748.)

Learning algorithms for multilayer networks are similar to the perceptron learning al-
gorithm show in Figure 20.21. One minor difference is that we may have several outputs, so

11 Some people call this a three-layer network, and some call it a two-layer network (because the inputs aren’t
“real” units). We will avoid confusion and call it a “single-hidden-layer network.”
12 The proof is complex, but the main point is that the required number of hidden units grows exponentially with
the number of inputs. For example, 2n/n hidden units are needed to encode all Boolean functions of n inputs.
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Figure 20.24 A multilayer neural network with one hidden layer and 10 inputs, suitable
for the restaurant problem.

we have an output vector hW(x) rather than a single value, and each example has an output
vector y. The major difference is that, whereas the error y − hW at the output layer is clear,
the error at the hidden layers seems mysterious because the training data does not say what
value the hidden nodes should have. It turns out that we can back-propagate the error fromBACK-PROPAGATION

the output layer to the hidden layers. The back-propagation process emerges directly from a
derivation of the overall error gradient. First, we will describe the process with an intuitive
justification; then, we will show the derivation.

At the output layer, the weight-update rule is identical to Equation (20.12). We have
multiple output units, so let Err i be ith component of the error vector y − hW. We will also
find it convenient to define a modified error ∆i =Err i × g′(ini), so that the weight-update
rule becomes

Wj,i ←Wj,i + α× aj ×∆i . (20.14)

To update the connections between the input units and the hidden units, we need to define a
quantity analogous to the error term for output nodes. Here is where we do the error back-
propagation. The idea is that hidden node j is “responsible” for some fraction of the error ∆i

in each of the output nodes to which it connects. Thus, the ∆i values are divided according
to the strength of the connection between the hidden node and the output node and are prop-
agated back to provide the ∆j values for the hidden layer. The propagation rule for the ∆
values is the following:

∆j = g′(inj)
∑

i

Wj,i∆i . (20.15)

Now the weight-update rule for the weights between the inputs and the hidden layer is almost
identical to the update rule for the output layer:

Wk,j ←Wk,j + α× ak ×∆j .

The back-propagation process can be summarized as follows:
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function BACK-PROP-LEARNING(examples ,network ) returns a neural network
inputs: examples , a set of examples, each with input vector x and output vector y

network , a multilayer network with L layers, weights Wj,i, activation function g

repeat
for each e in examples do

for each node j in the input layer do aj← xj [e]
for ` = 2 to M do

ini←
∑

j Wj,i aj

ai← g(ini)
for each node i in the output layer do

∆i← g ′(ini) × (yi[e] − ai)
for ` = M − 1 to 1 do

for each node j in layer ` do
∆j← g ′(inj)

∑

i Wj,i ∆i

for each node i in layer ` + 1 do
Wj,i←Wj,i + α × aj × ∆i

until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS(network )

Figure 20.25 The back-propagation algorithm for learning in multilayer networks.

• Compute the ∆ values for the output units, using the observed error.

• Starting with output layer, repeat the following for each layer in the network, until the
earliest hidden layer is reached:

– Propagate the ∆ values back to the previous layer.

– Update the weights between the two layers.

The detailed algorithm is shown in Figure 20.25.
For the mathematically inclined, we will now derive the back-propagation equations

from first principles. The squared error on a single example is defined as

E =
1

2

∑

i

(yi − ai)
2 ,

where the sum is over the nodes in the output layer. To obtain the gradient with respect to a
specific weight Wj,i in the output layer, we need only expand out the activation ai as all other
terms in the summation are unaffected by Wj,i:

∂E

∂Wj,i
= −(yi − ai)

∂ai

∂Wj,i
= −(yi − ai)

∂g(ini)

∂Wj,i

= −(yi − ai)g
′(ini)

∂ini

∂Wj,i
= −(yi − ai)g

′(ini)
∂

∂Wj,i





∑

j

Wj,iaj





= −(yi − ai)g
′(ini)aj = −aj∆i ,
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with ∆i defined as before. To obtain the gradient with respect to the Wk,j weights connecting
the input layer to the hidden layer, we have to keep the entire summation over i because
each output value ai may be affected by changes in Wk,j . We also have to expand out the
activations aj . We will show the derivation in gory detail because it is interesting to see how
the derivative operator propagates back through the network:

∂E

∂Wk,j
= −

∑

i

(yi − ai)
∂ai

∂Wk,j
= −

∑

i

(yi − ai)
∂g(ini)

∂Wk,j

= −
∑

i

(yi − ai)g
′(ini)

∂ini

∂Wk,j
= −

∑

i

∆i
∂

∂Wk,j





∑

j

Wj,iaj





= −
∑

i

∆iWj,i
∂aj

∂Wk,j
= −

∑

i

∆iWj,i
∂g(inj)

∂Wk,j

= −
∑

i

∆iWj,ig
′(inj)

∂inj

∂Wk,j

= −
∑

i

∆iWj,ig
′(inj)

∂

∂Wk,j

(

∑

k

Wk,jak

)

= −
∑

i

∆iWj,ig
′(inj)ak = −ak∆j ,

where ∆j is defined as before. Thus, we obtain the update rules obtained earlier from intuitive
considerations. It is also clear that the process can be continued for networks with more than
one hidden layer, which justifies the general algorithm given in Figure 20.25.

Having made it through (or skipped over) all the mathematics, let’s see how a single-
hidden-layer network performs on the restaurant problem. In Figure 20.26, we show two
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Figure 20.26 (a) Training curve showing the gradual reduction in error as weights are
modified over several epochs, for a given set of examples in the restaurant domain. (b)
Comparative learning curves showing that decision-tree learning does slightly better than
back-propagation in a multilayer network.
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curves. The first is a training curve, which shows the mean squared error on a given trainingTRAINING CURVE

set of 100 restaurant examples during the weight-updating process. This demonstrates that
the network does indeed converge to a perfect fit to the training data. The second curve is the
standard learning curve for the restaurant data. The neural network does learn well, although
not quite as fast as decision-tree learning; this is perhaps not surprising, because the data were
generated from a simple decision tree in the first place.

Neural networks are capable of far more complex learning tasks of course, although it
must be said that a certain amount of twiddling is needed to get the network structure right
and to achieve convergence to something close to the global optimum in weight space. There
are literally tens of thousands of published applications of neural networks. Section 20.7
looks at one such application in more depth.

Learning neural network structures

So far, we have considered the problem of learning weights, given a fixed network structure;
just as with Bayesian networks, we also need to understand how to find the best network
structure. If we choose a network that is too big, it will be able to memorize all the examples
by forming a large lookup table, but will not necessarily generalize well to inputs that have
not been seen before.13 In other words, like all statistical models, neural networks are subject
to overfitting when there are too many parameters in the model. We saw this in Figure 18.1
(page 652), where the high-parameter models in (b) and (c) fit all the data, but might not
generalize as well as the low-parameter models in (a) and (d).

If we stick to fully connected networks, the only choices to be made concern the number
of hidden layers and their sizes. The usual approach is to try several and keep the best. The
cross-validation techniques of Chapter 18 are needed if we are to avoid peeking at the test
set. That is, we choose the network architecture that gives the highest prediction accuracy on
the validation sets.

If we want to consider networks that are not fully connected, then we need to find
some effective search method through the very large space of possible connection topologies.
The optimal brain damage algorithm begins with a fully connected network and removesOPTIMAL BRAIN

DAMAGE

connections from it. After the network is trained for the first time, an information-theoretic
approach identifies an optimal selection of connections that can be dropped. The network
is then retrained, and if its performance has not decreased then the process is repeated. In
addition to removing connections, it is also possible to remove units that are not contributing
much to the result.

Several algorithms have been proposed for growing a larger network from a smaller one.
One, the tiling algorithm, resembles decision-list learning. The idea is to start with a singleTILING

unit that does its best to produce the correct output on as many of the training examples as
possible. Subsequent units are added to take care of the examples that the first unit got wrong.
The algorithm adds only as many units as are needed to cover all the examples.

13 It has been observed that very large networks do generalize well as long as the weights are kept small. This
restriction keeps the activation values in the linear region of the sigmoid function g(x) where x is close to zero.
This, in turn, means that the network behaves like a linear function (Exercise 20.17) with far fewer parameters.
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20.6 KERNEL MACHINES

Our discussion of neural networks left us with a dilemma. Single-layer networks have a
simple and efficient learning algorithm, but have very limited expressive power—they can
learn only linear decision boundaries in the input space. Multilayer networks, on the other
hand, are much more expressive—they can represent general nonlinear functions—but are
very hard to train because of the abundance of local minima and the high dimensionality
of the weight space. In this section, we will explore a relatively new family of learning
methods called support vector machines (SVMs) or, more generally, kernel machines. ToSUPPORT VECTOR

MACHINE

KERNEL MACHINE some extent, kernel machines give us the best of both worlds. That is, these methods use an
efficient training algorithm and can represent complex, nonlinear functions.

The full treatment of kernel machines is beyond the scope of the book, but we can
illustrate the main idea through an example. Figure 20.27(a) shows a two-dimensional input
space defined by attributes x = (x1, x2), with positive examples (y = + 1) inside a circular
region and negative examples (y = − 1) outside. Clearly, there is no linear separator for this
problem. Now, suppose we re-express the input data using some computed features—i.e., we
map each input vector x to a new vector of feature values, F (x). In particular, let us use the
three features

f1 =x2
1 , f2 = x2

2 , f3 =
√

2x1x2 . (20.16)

We will see shortly where these came from, but, for now, just look at what happens. Fig-
ure 20.27(b) shows the data in the new, three-dimensional space defined by the three features;
the data are linearly separable in this space! This phenomenon is actually fairly general: if
data are mapped into a space of sufficiently high dimension, then they will always be linearly
separable. Here, we used only three dimensions,14 but if we have N data points then, ex-
cept in special cases, they will always be separable in a space of N − 1 dimensions or more
(Exercise 20.21).

So, is that it? Do we just produce loads of computed features and then find a linear
separator in the corresponding high-dimensional space? Unfortunately, it’s not that easy.
Remember that a linear separator in a space of d dimensions is defined by an equation with d
parameters, so we are in serious danger of overfitting the data if d ≈ N , the number of data
points. (This is like overfitting data with a high-degree polynomial, which we discussed in
Chapter 18.) For this reason, kernel machines usually find the optimal linear separator—the
one that has the largest margin between it and the positive examples on one side and theMARGIN

negative examples on the other. (See Figure 20.28.) It can be shown, using arguments from
computational learning theory (Section 18.5), that this separator has desirable properties in
terms of robust generalization to new examples.

Now, how do we find this separator? It turns out that this is a quadratic programmingQUADRATIC
PROGRAMMING

optimization problem. Suppose we have examples xi with classifications yi = ± 1 and we
want to find an optimal separator in the input space; then the quadratic programming problem

14 The reader may notice that we could have used just f1 and f2, but the 3D mapping illustrates the idea better.
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Figure 20.27 (a) A two-dimensional training with positive examples as black circles and
negative examples as white circles. The true decision boundary, x2

1 + x2
2 ≤ 1, is also shown.

(b) The same data after mapping into a three-dimensional input space (x2
1, x

2
2,
√

2x1x2). The
circular decision boundary in (a) becomes a linear decision boundary in three dimensions.
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Figure 20.28 A close-up, projected onto the first two dimensions, of the optimal separator
shown in Figure 20.27(b). The separator is shown as a heavy line, with the closest points—the
support vectors—marked with circles. The margin is the separation between the positive
and negative examples.
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is to find values of the parameters αi that maximize the expression
∑

i

αi −
1

2

∑

i,j

αiαjyiyj(xi · xj) (20.17)

subject to the constraints αi ≥ 0 and
∑

i αiyi = 0. Although the derivation of this expression
is not crucial to the story, it does have two important properties. First, the expression has a
single global maximum that can be found efficiently. Second, the data enter the expression
only in the form of dot products of pairs of points. This second property is also true of the
equation for the separator itself; once the optimal αis have been calculated, it is

h(x) = sign

(

∑

i

αiyi(x · xi)

)

. (20.18)

A final important property of the optimal separator defined by this equation is that the weights
αi associated with each data point are zero except for those points closest to the separator—
the so-called support vectors. (They are called this because they “hold up” the separatingSUPPORT VECTOR

plane.) Because there are usually many fewer support vectors than data points, the effective
number of parameters defining the optimal separator is usually much less than N .

Now, we would not usually expect to find a linear separator in the input space x, but it
is easy to see that we can find linear separators in the high-dimensional feature space F (x)
simply by replacing xi · xj in Equation (20.17) with F (xi) · F (xj). This by itself is not
remarkable—replacing x by F (x) in any learning algorithm has the required effect—but the
dot product has some special properties. It turns out that F (xi) ·F (xj) can often be computed
without first computing F for each point. In our three-dimensional feature space defined by
Equation (20.16), a little bit of algebra shows that

F (xi) · F (xj) = (xi · xj)
2 .

The expression (xi · xj)
2 is called a kernel function, usually written as K(xi, xj). In the

kernel machine context, this means a function that can be applied to pairs of input data to
evaluate dot products in some corresponding feature space. So, we can restate the claim at the
beginning of this paragraph as follows: we can find linear separators in the high-dimensional
feature space F (x) simply by replacing xi · xj in Equation (20.17) with a kernel function
K(xi, xj). Thus, we can learn in the high-dimensional space but we compute only kernel
functions rather than the full list of features for each data point.

The next step, which should by now be obvious, is to see that there’s nothing special
about the kernel K(xi, xj)= (xi · xj)

2. It corresponds to a particular higher-dimensional
feature space, but other kernel functions correspond to other feature spaces. A venerable
result in mathematics, Mercer’s theorem (1909), tells us that any “reasonable” 15 kernelMERCER’S THEOREM

function corresponds to some feature space. These feature spaces can be very large, even for
innocuous-looking kernels. For example, the polynomial kernel, K(xi, xj)= (1 + xi · xj)

d,POLYNOMIAL
KERNEL

corresponds to a feature space whose dimension is exponential in d. Using such kernels in
Equation (20.17), then, optimal linear separators can be found efficiently in feature spaces
with billions (or, in some cases, infinitely many) dimensions. The resulting linear separators,

15 Here, “reasonable” means that the matrix Kij = K(xi, xj) is positive definite; see Appendix A.
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when mapped back to the original input space, can correspond to arbitrarily wiggly, nonlinear
boundaries between the positive and negative examples.

We mentioned in the preceding section that kernel machines excel at handwritten digit
recognition; they are rapidly being adopted for other applications—especially those with
many input features. As part of this process, many new kernels have been designed that
work with strings, trees, and other non-numerical data types. It has also been observed that
the kernel method can be applied not only with learning algorithms that find optimal linear
separators, but also with any other algorithm that can be reformulated to work only with dot
products of pairs of data points, as in Equations 20.17 and 20.18. Once this is done, the dot
product is replaced by a kernel function and we have a kernelized version of the algorithm.KERNELIZATION

This can be done easily for k-nearest-neighbor and perceptron learning, among others.

20.7 CASE STUDY: HANDWRITTEN DIGIT RECOGNITION

Recognizing handwritten digits is an important problem with many applications, including
automated sorting of mail by postal code, automated reading of checks and tax returns, and
data entry for hand-held computers. It is an area where rapid progress has been made, in part
because of better learning algorithms and in part because of the availability of better training
sets. The United States National Institute of Science and Technology (NIST) has archived a
database of 60,000 labeled digits, each 20× 20= 400 pixels with 8-bit grayscale values. It
has become one of the standard benchmark problems for comparing new learning algorithms.
Some example digits are shown in Figure 20.29.

Figure 20.29 Examples from the NIST database of handwritten digits. Top row: examples
of digits 0–9 that are easy to identify. Bottom row: more difficult examples of the same digits.

Many different learning approaches have been tried. One of the first, and probably the
simplest, is the 3-nearest-neighbor classifier, which also has the advantage of requiring no
training time. As a memory-based algorithm, however, it must store all 60,000 images, and
its runtime performance is slow. It achieved a test error rate of 2.4%.

A single-hidden-layer neural network was designed for this problem with 400 input
units (one per pixel) and 10 output units (one per class). Using cross-validation, it was found
that roughly 300 hidden units gave the best performance. With full interconnections between
layers, there were a total of 123,300 weights. This network achieved a 1.6% error rate.
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A series of specialized neural networks called LeNet were devised to take advantage
of the structure of the problem—that the input consists of pixels in a two–dimensional array,
and that small changes in the position or slant of an image are unimportant. Each network
had an input layer of 32× 32 units, onto which the 20× 20 pixels were centered so that each
input unit is presented with a local neighborhood of pixels. This was followed by three layers
of hidden units. Each layer consisted of several planes of n×n arrays, where n is smaller
than the previous layer so that the network is down-sampling the input, and where the weights
of every unit in a plane are constrained to be identical, so that the plane is acting as a feature
detector: it can pick out a feature such as a long vertical line or a short semi-circular arc. The
output layer had 10 units. Many versions of this architecture were tried; a representative one
had hidden layers with 768, 192, and 30 units, respectively. The training set was augmented
by applying affine transformations to the actual inputs: shifting, slightly rotating, and scaling
the images. (Of course, the transformations have to be small, or else a 6 will be transformed
into a 9!) The best error rate achieved by LeNet was 0.9%.

A boosted neural network combined three copies of the LeNet architecture, with the
second one trained on a mix of patterns that the first one got 50% wrong, and the third one
trained on patterns for which the first two disagreed. During testing, the three nets voted with
their weights for each of the ten digits, and the scores are added to determine the winner. The
test error rate was 0.7%.

A support vector machine (see Section 20.6) with 25,000 support vectors achieved an
error rate of 1.1%. This is remarkable because the SVM technique, like the simple nearest-
neighbor approach, required almost no thought or iterated experimentation on the part of the
developer, yet it still came close to the performance of LeNet, which had had years of devel-
opment. Indeed, the support vector machine makes no use of the structure of the problem,
and would perform just as well if the pixels were presented in a permuted order.

A virtual support vector machine starts with a regular SVM and then improves itVIRTUAL SUPPORT
VECTOR MACHINE

with a technique that is designed to take advantage of the structure of the problem. Instead of
allowing products of all pixel pairs, this approach concentrates on kernels formed from pairs
of nearby pixels. It also augments the training set with transformations of the examples, just
as LeNet did. A virtual SVM achieved the best error rate recorded to date, 0.56%.

Shape matching is a technique from computer vision used to align corresponding parts
of two different images of objects. (See Chapter 24.) The idea is to pick out a set of points in
each of the two images, and then compute, for each point in the first image, which point in the
second image it corresponds to. From this alignment, we then compute a transformation be-
tween the images. The transformation gives us a measure of the distance between the images.
This distance measure is better motivated than just counting the number of differing pixels,
and it turns out that a 3–nearest neighbor algorithm using this distance measure performs very
well. Training on only 20,000 of the 60,000 digits, and using 100 sample points per image
extracted from a Canny edge detector, a shape matching classifier achieved 0.63% test error.

Humans are estimated to have an error rate of about 0.2% on this problem. This figure
is somewhat suspect because humans have not been tested as extensively as have machine
learning algorithms. On a similar data set of digits from the United States Postal Service,
human errors were at 2.5%.
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The following figure summarizes the error rates, runtime performance, memory require-
ments, and amount of training time for the seven algorithms we have discussed. It also adds
another measure, the percentage of digits that must be rejected to achieve 0.5% error. For ex-
ample, if the SVM is allowed to reject 1.8% of the inputs—that is, pass them on for someone
else to make the final judgment—then its error rate on the remaining 98.2% of the inputs is
reduced from 1.1% to 0.5%.

The following table summarizes the error rate and some of the other characteristics of
the seven techniques we have discussed.

3 300 Boosted Virtual Shape
NN Hidden LeNet LeNet SVM SVM Match

Error rate (pct.) 2.4 1.6 0.9 0.7 1.1 0.56 0.63
Runtime (millisec/digit) 1000 10 30 50 2000 200
Memory requirements (Mbyte) 12 .49 .012 .21 11
Training time (days) 0 7 14 30 10
% rejected to reach 0.5% error 8.1 3.2 1.8 0.5 1.8

20.8 SUMMARY

Statistical learning methods range from simple calculation of averages to the construction
of complex models such as Bayesian networks and neural networks. They have applica-
tions throughout computer science, engineering, neurobiology, psychology, and physics. This
chapter has presented some of the basic ideas and given a flavor of the mathematical under-
pinnings. The main points are as follows:

• Bayesian learning methods formulate learning as a form of probabilistic inference,
using the observations to update a prior distribution over hypotheses. This approach
provides a good way to implement Ockham’s razor, but quickly becomes intractable for
complex hypothesis spaces.

• Maximum a posteriori (MAP) learning selects a single most likely hypothesis given
the data. The hypothesis prior is still used and the method is often more tractable than
full Bayesian learning.

• Maximum likelihood learning simply selects the hypothesis that maximizes the likeli-
hood of the data; it is equivalent to MAP learning with a uniform prior. In simple cases
such as linear regression and fully observable Bayesian networks, maximum likelihood
solutions can be found easily in closed form. Naive Bayes learning is a particularly
effective technique that scales well.

• When some variables are hidden, local maximum likelihood solutions can be found
using the EM algorithm. Applications include clustering using mixtures of Gaussians,
learning Bayesian networks, and learning hidden Markov models.
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• Learning the structure of Bayesian networks is an example of model selection. This
usually involves a discrete search in the space of structures. Some method is required
for trading off model complexity against degree of fit.

• Instance-based models represent a distribution using the collection of training in-
stances. Thus, the number of parameters grows with the training set. Nearest-neighbor
methods look at the instances nearest to the point in question, whereas kernel methods
form a distance-weighted combination of all the instances.

• Neural networks are complex nonlinear functions with many parameters. Their pa-
rameters can be learned from noisy data and they have been used for thousands of
applications.

• A perceptron is a feed-forward neural network with no hidden units that can represent
only linearly separable functions. If the data are linearly separable, a simple weight-
update rule can be used to fit the data exactly.

• Multilayer feed-forward neural networks can represent any function, given enough
units. The back-propagation algorithm implements a gradient descent in parameter
space to minimize the output error.

Statistical learning continues to be a very active area of research. Enormous strides have been
made in both theory and practice, to the point where it is possible to learn almost any model
for which exact or approximate inference is feasible.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The application of statistical learning techniques in AI was an active area of research in
the early years (see Duda and Hart, 1973) but became separated from mainstream AI as the
latter field concentrated on symbolic methods. It continued in various forms—some explicitly
probabilistic, others not—in areas such as pattern recognition (Devroye et al., 1996) and
information retrieval (Salton and McGill, 1983). A resurgence of interest occurred shortly
after the introduction of Bayesian network models in the late 1980s; at roughly the same time,
a statistical view of neural network learning began to emerge. In the late 1990s, there was
a noticeable convergence of interests in machine learning, statistics, and neural networks,
centered on methods for creating large probabilistic models from data.

The naive Bayes model is one of the oldest and simplest forms of Bayesian network,
dating back to the 1950s. Its origins were mentioned in the notes at the end of Chapter 13. is
partially explained by Domingos and Pazzani (1997). A boosted form of naive Bayes learn-
ing won the first KDD Cup data mining competition (Elkan, 1997). Heckerman (1998) gives
an excellent introduction to the general problem of Bayes net learning. Bayesian parame-
ter learning with Dirichlet priors for Bayesian networks was discussed by Spiegelhalter et al.
(1993). The BUGS software package (Gilks et al., 1994) incorporates many of these ideas and
provides a very powerful tool for formulating and learning complex probability models. The
first algorithms for learning Bayes net structures used conditional independence tests (Pearl,
1988; Pearl and Verma, 1991). Spirtes et al. (1993) developed a comprehensive approach
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and the TETRAD package for Bayes net learning using similar ideas. Algorithmic improve-
ments since then led to a clear victory in the 2001 KDD Cup data mining competition for a
Bayes net learning method (Cheng et al., 2002). (The specific task here was a bioinformatics
problem with 139,351 features!) A structure-learning approach based on maximizing like-
lihood was developed by Cooper and Herskovits (1992) and improved by Heckerman et al.
(1994). Friedman and Goldszmidt (1996) pointed out the influence of the representation of
local conditional distributions on the learned structure.

The general problem of learning probability models with hidden variables and missing
data was addressed by the EM algorithm (Dempster et al., 1977), which was abstracted from
several existing methods including the Baum–Welch algorithm for HMM learning (Baum
and Petrie, 1966). (Dempster himself views EM as a schema rather than an algorithm, since a
good deal of mathematical work may be required before it can be applied to a new family of
distributions.) EM is now one of the most widely used algorithms in science, and McLachlan
and Krishnan (1997) devote an entire book to the algorithm and its properties. The specific
problem of learning mixture models, including mixtures of Gaussians, is covered by Tittering-
ton et al. (1985). Within AI, the first successful system that used EM for mixture modelling
was AUTOCLASS (Cheeseman et al., 1988; Cheeseman and Stutz, 1996). AUTOCLASS has
been applied to a number of real-world scientific classification tasks, including the discovery
of new types of stars from spectral data (Goebel et al., 1989) and new classes of proteins and
introns in DNA/protein sequence databases (Hunter and States, 1992).

An EM algorithm for learning Bayes nets with hidden variables was developed by Lau-
ritzen (1995). Gradient-based techniques have also proved effective for Bayes nets as well as
dynamic Bayes nets (Russell et al., 1995; Binder et al., 1997a). The structural EM algorithm
was developed by (Friedman, 1998). The ability to learn the structure of Bayesian networks is
closely connected to the issue of recovering causal information from data. That is, is it possi-
ble to learn Bayes nets in such a way that the recovered network structure indicates real causal
influences? For many years, statisticians avoided this question, believing that observational
data (as opposed to data generated from experimental trials) could yield only correlational
information—after all, any two variables that appear related might in fact be influenced by
third, unknown causal factor rather than influencing each other directly. Pearl (2000) has pre-
sented convincing arguments to the contrary, showing that there are in fact many cases where
causality can be ascertained and developing the causal network formalism to express causesCAUSAL NETWORK

and the effects of intervention as well as ordinary conditional probabilities.
Nearest-neighbor models date back at least to (Fix and Hodges, 1951) and have been a

standard tool in statistics and pattern recognition ever since. Within AI, they were popularized
by (Stanfill and Waltz, 1986), who investigated methods for adapting the distance metric to
the data. Hastie and Tibshirani (1996) developed a way to localize the metric to each point
in the space, depending on the distribution of data around that point. Efficient indexing
schemes for finding nearest neighbors are studied within the algorithms community (see,
e.g., Indyk, 2000). Kernel density estimation, also called Parzen window density estimation,
was investigated initially by Rosenblatt (1956) and Parzen (1962). Since that time, a huge
literature has developed investigating the properties of various estimators. Devroye (1987)
gives a thorough introduction.
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The literature on neural networks is rather too large (approximately 100,000 papers to
date) to cover in detail. Cowan and Sharp (1988b, 1988a) survey the early history, beginning
with the work of McCulloch and Pitts (1943). Norbert Wiener, a pioneer of cybernetics and
control theory (Wiener, 1948), worked with McCulloch and Pitts and influenced a number of
young researchers including Marvin Minsky, who may have been the first to develop a work-
ing neural network in hardware in 1951 (see Minsky and Papert, 1988, pp. ix–x). Meanwhile,
in Britain, W. Ross Ashby (also a pioneer of cybernetics; see Ashby, 1940), Alan Turing,
Grey Walter, and others formed the Ratio Club for “those who had Wiener’s ideas before
Wiener’s book appeared.” Ashby’s Design for a Brain (1948, 1952) put forth the idea that
intelligence could be created by the use of homeostatic devices containing appropriate feed-
back loops to achieve stable adaptive behavior. Turing (1948) wrote a research report titled
Intelligent Machinery that begins with the sentence “I propose to investigate the question as
to whether it is possible for machinery to show intelligent behaviour” and goes on to describe
a recurrent neural network architecture he called “B-type unorganized machines” and an ap-
proach to training them. Unfortunately, the report went unpublished until 1969, and was all
but ignored until recently.

Frank Rosenblatt (1957) invented the modern “perceptron” and proved the percep-
tron convergence theorem (1960), although it had been foreshadowed by purely mathemat-
ical work outside the context of neural networks (Agmon, 1954; Motzkin and Schoenberg,
1954). Some early work was also done on multilayer networks, including Gamba percep-
trons (Gamba et al., 1961) and madalines (Widrow, 1962). Learning Machines (Nilsson,
1965) covers much of this early work and more. The subsequent demise of early perceptron
research efforts was hastened (or, the authors later claimed, merely explained) by the book
Perceptrons (Minsky and Papert, 1969), which lamented the field’s lack of mathematical
rigor. The book pointed out that single-layer perceptrons could represent only linearly sepa-
rable concepts and noted the lack of effective learning algorithms for multilayer networks.

The papers in (Hinton and Anderson, 1981), based on a conference in San Diego in
1979, can be regarded as marking the renaissance of connectionism. The two-volume “PDP”
(Parallel Distributed Processing) anthology (Rumelhart et al., 1986a) and a short article in
Nature (Rumelhart et al., 1986b) attracted a great deal of attention—indeed, the number of
papers on “neural networks” multiplied by a factor of 200 between 1980–84 and 1990–94.
The analysis of neural networks using the physical theory of magnetic spin glasses (Amit
et al., 1985) tightened the links between statistical mechanics and neural network theory—
providing not only useful mathematical insights but also respectability. The back-propagation
technique had been invented quite early (Bryson and Ho, 1969) but it was rediscovered several
times (Werbos, 1974; Parker, 1985).

Support vector machines were originated in the 1990s (Cortes and Vapnik, 1995) and
are now the subject of a fast-growing literature, including textbooks such as Cristianini and
Shawe-Taylor (2000). They have proven to be very popular and effective for tasks such as
text categorization (Joachims, 2001), bioinformatics research (Brown et al., 2000), and natu-
ral language processing, such as the handwritten digit recognition of DeCoste and Scholkopf
(2002). A related technique that also uses the “kernel trick” to implicitly represent an expo-
nential feature space is the voted perceptron (Collins and Duffy, 2002).
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The probabilistic interpretation of neural networks has several sources, including Baum
and Wilczek (1988) and Bridle (1990). The role of the sigmoid function is discussed by
Jordan (1995). Bayesian parameter learning for neural networks was proposed by MacKay
(1992) and is explored further by Neal (1996). The capacity of neural networks to represent
functions was investigated by Cybenko (1988, 1989), who showed that two hidden layers are
enough to represent any function and a single layer is enough to represent any continuous
function. The “optimal brain damage” method for removing useless connections is by LeCun
et al. (1989), and Sietsma and Dow (1988) show how to remove useless units. The tiling
algorithm for growing larger structures is due to Mézard and Nadal (1989). LeCun et al.
(1995) survey a number of algorithms for handwritten digit recognition. Improved error rates
since then were reported by Belongie et al. (2002) for shape matching and DeCoste and
Scholkopf (2002) for virtual support vectors.

The complexity of neural network learning has been investigated by researchers in com-
putational learning theory. Early computational results were obtained by Judd (1990), who
showed that the general problem of finding a set of weights consistent with a set of examples
is NP-complete, even under very restrictive assumptions. Some of the first sample complexity
results were obtained by Baum and Haussler (1989), who showed that the number of exam-
ples required for effective learning grows as roughly W log W , where W is the number of
weights.16 Since then, a much more sophisticated theory has been developed (Anthony and
Bartlett, 1999), including the important result that the representational capacity of a network
depends on the size of the weights as well as on their number.

The most popular kind of neural network that we did not cover is the radial basis
function, or RBF, network. A radial basis function combines a weighted collection of kernelsRADIAL BASIS

FUNCTION

(usually Gaussians, of course) to do function approximation. RBF networks can be trained in
two phases: first, an unsupervised clustering approach is used to train the parameters of the
Gaussians—the means and variances—are trained, as in Section 20.3. In the second phase,
the relative weights of the Gaussians are determined. This is a system of linear equations,
which we know how to solve directly. Thus, both phases of RBF training have a nice benefit:
the first phase is unsupervised, and thus does not require labelled training data, and the second
phase, although supervised, is efficient. See Bishop (1995) for more details.

Recurrent networks, in which units are linked in cycles, were mentioned in the chap-
ter but not explored in depth. Hopfield networks (Hopfield, 1982) are probably the best-HOPFIELD

NETWORKS

understood class of recurrent networks. They use bidirectional connections with symmetric
weights (i.e., Wi,j = Wj,i), all of the units are both input and output units, the activation
function g is the sign function, and the activation levels can only be ±1. A Hopfield network
functions as an associative memory: after the network trains on a set of examples, a newASSOCIATIVE

MEMORY

stimulus will cause it to settle into an activation pattern corresponding to the example in the
training set that most closely resembles the new stimulus. For example, if the training set con-
sists of a set of photographs, and the new stimulus is a small piece of one of the photographs,
then the network activation levels will reproduce the photograph from which the piece was

16 This approximately confirmed “Uncle Bernie’s rule.” The rule was named after Bernie Widrow, who recom-
mended using roughly ten times as many examples as weights.
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taken. Notice that the original photographs are not stored separately in the network; each
weight is a partial encoding of all the photographs. One of the most interesting theoretical
results is that Hopfield networks can reliably store up to 0.138N training examples, where N
is the number of units in the network.

Boltzmann machines (Hinton and Sejnowski, 1983, 1986) also use symmetric weights,BOLTZMANN
MACHINES

but include hidden units. In addition, they use a stochastic activation function, such that
the probability of the output being 1 is some function of the total weighted input. Boltz-
mann machines therefore undergo state transitions that resemble a simulated annealing search
(see Chapter 4) for the configuration that best approximates the training set. It turns out that
Boltzmann machines are very closely related to a special case of Bayesian networks evaluated
with a stochastic simulation algorithm. (See Section 14.5.)

The first application of the ideas underlying kernel machines was by Aizerman et al.
(1964), but the full development of the theory, under the heading of support vector machines,
is due to Vladimir Vapnik and colleagues (Boser et al., 1992; Vapnik, 1998). Cristianini
and Shawe-Taylor (2000) and Scholkopf and Smola (2002) provide rigorous introductions; a
friendlier exposition appears in the AI Magazine article by Cristianini and Schölkopf (2002).

The material in this chapter brings together work from the fields of statistics, pattern
recognition, and neural networks, so the story has been told many times in many ways. Good
texts on Bayesian statistics include those by DeGroot (1970), Berger (1985), and Gelman
et al. (1995). Hastie et al. (2001) provide an excellent introduction to statistical learning
methods. For pattern classification, the classic text for many years has been Duda and Hart
(1973), now updated (Duda et al., 2001). For neural nets, Bishop (1995) and Ripley (1996)
are the leading texts. The field of computational neuroscience is covered by Dayan and Ab-
bott (2001). The most important conference on neural networks and related topics is the
annual NIPS (Neural Information Processing Conference) conference, whose proceedings
are published as the series Advances in Neural Information Processing Systems. Papers on
learning Bayesian networks also appear in the Uncertainty in AI and Machine Learning con-
ferences and in several statistics conferences. Journals specific to neural networks include
Neural Computation, Neural Networks, and the IEEE Transactions on Neural Networks.

EXERCISES

20.1 The data used for Figure 20.1 can be viewed as being generated by h5. For each of the
other four hypotheses, generate a data set of length 100 and plot the corresponding graphs for
P (hi|d1, . . . , dm) and P (Dm+1 = lime|d1, . . . , dm). Comment on your results.

20.2 Repeat Exercise 20.1, this time plotting the values of P (Dm+1 = lime|hMAP) and
P (Dm+1 = lime|hML).

20.3 Suppose that Ann’s utilities for cherry and lime candies are cA and `A, whereas Bob’s
utilities are cB and `B . (But once Ann has unwrapped a piece of candy, Bob won’t buy it.)
Presumably, if Bob likes lime candies much more than Ann, it would be wise to sell for Ann
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to sell her bag of candies once she is sufficiently sure of its lime content. On the other hand,
if Ann unwraps too many candies in the process, the bag will be worth less. Discuss the
problem of determining the optimal point at which to sell the bag. Determine the expected
utility of the optimal procedure, given the prior distribution from Section 20.1.

20.4 Two statisticians go to the doctor and are both given the same prognosis: A 40%
chance that the problem is the deadly disease A, and a 60% chance of the fatal disease B.
Fortunately, there are anti-A and anti-B drugs that are inexpensive, 100% effective, and free
of side-effects. The statisticians have the choice of taking one drug, both, or neither. What
will the first statistician (an avid Bayesian) do? How about the second statistician, who always
uses the maximum likelihood hypothesis?

The doctor does some research and discovers that disease B actually comes in two
versions, dextro-B and levo-B, which are equally likely and equally treatable by the anti-B
drug. Now that there are three hypotheses, what will the two statisticians do?

20.5 Explain how to apply the boosting method of Chapter 18 to naive Bayes learning. Test
the performance of the resulting algorithm on the restaurant learning problem.

20.6 Consider m data points (xj , yj), where the yjs are generated from the xjs according to
the linear Gaussian model in Equation (20.5). Find the values of θ1, θ2, and σ that maximize
the conditional log likelihood of the data.

20.7 Consider the noisy-OR model for fever described in Section 14.3. Explain how to
apply maximum-likelihood learning to fit the parameters of such a model to a set of complete
data. (Hint: use the chain rule for partial derivatives.)

20.8 This exercise investigates properties of the Beta distribution defined in Equation (20.6).

a. By integrating over the range [0, 1], show that the normalization constant for the dis-
tribution beta[a, b] is given by α = Γ(a + b)/Γ(a)Γ(b) where Γ(x) is the Gamma
function, defined by Γ(x + 1)= x · Γ(x) and Γ(1)=1. (For integer x, Γ(x + 1)=x!.)GAMMA FUNCTION

b. Show that the mean is a/(a + b).

c. Find the mode(s) (the most likely value(s) of θ).

d. Describe the distribution beta[ε, ε] for very small ε. What happens as such a distribution
is updated?

20.9 Consider an arbitrary Bayesian network, a complete data set for that network, and the
likelihood for the data set according to the network. Give a simple proof that the likelihood
of the data cannot decrease if we add a new link to the network and recompute the maximum-
likelihood parameter values.

20.10 Consider the application of EM to learn the parameters for the network in Fig-
ure 20.10(a), given the true parameters in Equation (20.7).

a. Explain why the EM algorithm would not work if there were just two attributes in the
model rather than three.

b. Show the calculations for the first iteration of EM starting from Equation (20.8).
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c. What happens if we start with all the parameters set to the same value p? (Hint: you
may find it helpful to investigate this empirically before deriving the general result.)

d. Write out an expression for the log likelihood of the tabulated candy data on page 729 in
terms of the parameters, calculate the partial derivatives with respect to each parameter,
and investigate the nature of the fixed point reached in part (c).

20.11 Construct by hand a neural network that computes the XOR function of two inputs.
Make sure to specify what sort of units you are using.

20.12 Construct a support vector machine that computes the XOR function. It will be con-
venient to use values of 1 and –1 instead of 1 and 0 for the inputs and for the outputs. So an
example looks like ([−1, 1], 1) or ([−1,−1],−1). It is typical to map an input x into a space
consisting of five dimensions, the two original dimensions x1 and x2, and the three combina-
tion x2

1, x2
2 and x1 x2. But for this exercise we will consider only the two dimensions x1 and

x1 x2. Draw the four input points in this space, and the maximal margin separator. What is
the margin? Now draw the separating line back in the original Euclidean input space.

20.13 A simple perceptron cannot represent XOR (or, generally, the parity function of its
inputs). Describe what happens to the weights of a four-input, step-function perceptron,
beginning with all weights set to 0.1, as examples of the parity function arrive.

20.14 Recall from Chapter 18 that there are 22n
distinct Boolean functions of n inputs. How

many of these are representable by a threshold perceptron?

20.15 Consider the following set of examples, each with six inputs and one target output:

I1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
I2 0 0 0 1 1 0 0 1 1 0 1 0 1 1
I3 1 1 1 0 1 0 0 1 1 0 0 0 1 1
I4 0 1 0 0 1 0 0 1 0 1 1 1 0 1
I5 0 0 1 1 0 1 1 0 1 1 0 0 1 0
I6 0 0 0 1 0 1 0 1 1 0 1 1 1 0

T 1 1 1 1 1 1 0 1 0 0 0 0 0 0

a. Run the perceptron learning rule on these data and show the final weights.

b. Run the decision tree learning rule, and show the resulting decision tree.

c. Comment on your results.

20.16 Starting from Equation (20.13), show that ∂L/∂Wj,= Err × aj .

20.17 Suppose you had a neural network with linear activation functions. That is, for each
unit the output is some constant c times the weighted sum of the inputs.

a. Assume that the network has one hidden layer. For a given assignment to the weights
W, write down equations for the value of the units in the output layer as a function of
W and the input layer I, without any explicit mention to the output of the hidden layer.
Show that there is a network with no hidden units that computes the same function.
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b. Repeat the calculation in part (a), this time for a network with any number of hidden
layers. What can you conclude about linear activation functions?

20.18 Implement a data structure for layered, feed-forward neural networks, remembering
to provide the information needed for both forward evaluation and backward propagation.
Using this data structure, write a function NEURAL-NETWORK-OUTPUT that takes an exam-
ple and a network and computes the appropriate output values.

20.19 Suppose that a training set contains only a single example, repeated 100 times. In
80 of the 100 cases, the single output value is 1; in the other 20, it is 0. What will a back-
propagation network predict for this example, assuming that it has been trained and reaches
a global optimum? (Hint: to find the global optimum, differentiate the error function and set
to zero.)

20.20 The network in Figure 20.24 has four hidden nodes. This number was chosen some-
what arbitrarily. Run systematic experiments to measure the learning curves for networks
with different numbers of hidden nodes. What is the optimal number? Would it be possible
to use a cross-validation method to find the best network before the fact?

20.21 Consider the problem of separating N data points into positive and negative examples
using a linear separator. Clearly, this can always be done for N = 2 points on a line of
dimension d=1, regardless of how the points are labelled or where they are located (unless
the points are in the same place).

a. Show that it can always be done for N = 3 points on a plane of dimension d= 2, unless
they are collinear.

b. Show that it cannot always be done for N = 4 points on a plane of dimension d= 2.

c. Show that it can always be done for N =4 points in a space of dimension d= 3, unless
they are coplanar.

d. Show that it cannot always be done for N = 5 points in a space of dimension d= 3.

e. The ambitious student may wish to prove that N points in general position (but not
N + 1 are linearly separable in a space of dimension N − 1. From this it follows that
the VC dimension (see Chapter 18) of linear halfspaces in dimension N − 1 is N .


