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Abstract— The need for combined task and motion planning
in robotics is well understood. Solutions to this problem have
typically relied on special purpose, integrated implementations
of task planning and motion planning algorithms. We propose a
new approach that uses off-the-shelf task planners and motion
planners and makes no assumptions about their implementa-
tion. Doing so enables our approach to directly build on, and
benefit from, the vast literature and latest advances in task
planning and motion planning. It uses a novel representational
abstraction and requires only that failures in computing a mo-
tion plan for a high-level action be identifiable and expressible
in the form of logical predicates at the task level. We evaluate
the approach and illustrate its robustness through a number of
experiments using a state-of-the-art robotics simulator and a
PR2 robot. These experiments show the system accomplishing
a diverse set of challenging tasks such as taking advantage of
a tray when laying out a table for dinner and picking objects
from cluttered environments where other objects need to be
re-arranged before the target object can be reached.

I. INTRODUCTION

In order to achieve high-level goals like laying out a table,
robots need to be able to carry out high-level task planning in
conjunction with low-level motion planning. Task planning
is needed to determine long-term strategies such as whether
or not to use a tray to transport multiple objects, and motion
planning is required for computing the actual movements that
the robot should carry out. However, combining task planners
and motion planners is a hard problem because task planning
descriptions typically ignore the geometric preconditions of
physical actions. In reality, even simple high-level actions
such as picking up an object have continuous arguments,
geometric preconditions and effects. As a result, the approach
of generating a sequence of tasks and then doing motion
planning for each task fails.

The main contribution of this paper is an approach that
provides an interface between task and motion planning (with
fairly minimal assumptions on each planning layer), such
that the task planner can effectively operate in an abstracted
state space that ignores geometry. Geometric constraints
discovered through reasoning in the continuous state space
are translated and communicated to the task planner through
our interface layer (Fig. 1).

We introduce the main ideas through a tiny example in R?
(Fig.2). In this problem, a gripper can pick up a block if it
is adjacent to the block and aligned with one of its sides; it
can place a block that it is currently holding by moving to a
target location and releasing it. The goal is to pick up block
b1. A discrete planning specification for this problem would
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Fig. 1: Top: Outline of our approach. Bottom: Example test scenarios—
(L) A cluttered table where the dark object has to be picked (there is no
designated free space); (M) A dinner layout task where a tray is available
but not necessary for transportation; (R) The PR2 starting a dinner layout.

describe actions pick and place with the following precon-
ditions and effects: if the gripper is empty and pick(b;) is
applied, the gripper holds by ; if the gripper is holding b; and
place(by, S) is applied, the gripper no longer holds b; and b;
is placed in the region S. However, this description is clearly
inadequate because by obstructs all trajectories to b; in the
state depicted in Fig.2, and pick(b;) cannot be executed.
An accurate representation for this do-
main needs to include the geometric
s locations of objects and the gripper.
The pick action’s true arguments in-
clude targetPose and traj, denoting the
target pose where picking should be
done, and the trajectory along which
the gripper should move to get to tar-
getPose. The preconditions for picking
b1 require that rargetPose be valid a
gripping pose for b; and there be no
obstruction in traj.

Task planning domain descriptions
require actions with discrete arguments and thus cannot
directly handle this new representation. Discretizing the
continuous variables for the high-level task planner is im-
practical, as even crude discretizations of the domains of
the continuous variables quickly lead to computationally
impractical problems.!

Our main contribution is an approach for communicating
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Fig. 2: Running ex-
ample in R?: the grip-
per needs to pick bp
after moving to the dot-
ted pose.

'In a 2D world with only 10 sampled points along each axis, 5 objects,
and considering only Manhattan paths that don’t loop over themselves, we
would need to precompute the truth values of close to 50,000 “obstructs”
predicates for the initial state. A similar discretization for one arm and the
base for a PR2 robot would require ~ 1011 facts. Even if this is done, the
resulting problem instances will be too large to solve efficiently.



relevant geometric information to the task planner in terms
of logical predicates, without discretization. In order to
accomplish this we use symbolic references to continuous
values [1], such as “grasping pose for b;” and “trajectory for
reaching grasping pose for b;”. We use an off-the-shelf task
planner to produce plans of the form: “execute pick with a
target pose which is a grasping pose for b; and has a feasible
motion plan.” Each of the symbols used in such plans needs
to be instantiated, or refined into numbers. The interface layer
does this by iterating through possible values for “grasping
pose for b;” and invoking the motion planner to compute
a plan corresponding to each of them, thereby instantiating
the trajectory reference (this constitutes the plan refinement
process). Often however, a feasible instantiation may not
exist. For instance, since b, is obstructing the gripper’s path,
a task plan of picking b; followed by placing it in the region
S has no feasible refinement. Such failures can occur only if
the geometric preconditions for a high-level action such as
pick were false when it was attempted. These preconditions
often concern the absence of obstructions, but may also refer
to torque limits, stability properties of assemblies, etc. The
key challenge is that the task planner cannot compute the
truth values of such properties and the effects of actions on
them. This is a natural consequence of using a representation
suitable for task planners, and our approach is designed to
handle it: it initializes the truth values of such properties to
a set of default values and updates them if needed, during
the plan refinement and generation process.

When a feasible instantiation is not found, the interface
layer iterates through possible instantiations for the pose ref-
erences. For each instantiation, it determines the conditions
preventing a motion plan. Depending on the capabilities of
the motion planner, a motion plan could also be selected so
as to minimize these errors. For instance, the interface layer
identifies by as an obstruction error by removing all movable
objects, invoking the motion planner, and identifying the col-
lisions in the obtained trajectory. It translates this information
into symbolic form, e.g. “by obstructs trajectory for reaching
grasping pose for b;” and updates the task level state with
it. A task planner is used to find a new plan for the updated
state, e.g. “‘execute pick with a target pose from where by
can be grasped; execute place with a target pose from where
releasing by will place it on S; execute pick with a target pose
from where b; can be grasped.” For this plan the interface
layer will find an instantiation of the continuous variables
for which the motion planner can find a feasible motion plan
and we are done. Effectively, our approach specifies a search
problem for the interface.

The following sections formalize our algorithm and de-
scribe experiments on a number of tasks, including laying
out a dinner table, which has millions of discrete states,
and picking objects while replacing several obstructions
on a tightly cluttered table. Videos of the experiments are
available at:

http://www.cs.berkeley.edu/%$7Esiddharth/icrald.

II. BACKGROUND
A. Task Planning

The formal language PDDL [2] defines a fully observable,
deterministic task planning problem as a tuple (A, sg,g),
where A is a set of parameterized propositional actions
defined by preconditions and effects, sy is an initial state of
the domain, and g, a set of propositions, is the goal condition.
For clarity, we will describe both preconditions and effects
of actions as conjunctive lists of literals in first-order logic,
using quantifiers for brevity. The discrete pick action could
be represented as follows:
pick(obj, gripper)

precon  Empty(gripper)
effect  InGripper(obj), —Empty(gripper)

A sequence of actions ag, ..., a, executed beginning in sg
generates a state sequence 1, . . ., Sp4+1 where s;11 = a;(s;)
is the result of executing a; in s;. The action sequence is a
solution if s; satisfies the preconditions of a; for: =0,...,n
and s, satisfies g.

B. Motion Planning

A motion planning problem is a tuple (C, f, po, p;), where
C is the space of possible configurations or poses of a robot,
f is a Boolean function that determines whether or not a pose
is in collision and pg, p; € C are the initial and final poses. A
collision-free motion plan solving a motion planning problem
is a trajectory in C' from pg to p; such that f doesn’t hold for
any pose in the trajectory. Motion planning algorithms use
a variety of approaches for representing C' and f efficiently.
Throughout this paper, we will use the term motion plan to
denote a trajectory that may include collisions. In some tasks,
we may be interested in finding motion plans that ignore all
of the movable obstacles. A solution that allows collisions
only with a given set of movable objects in an environment
may be obtained by invoking a motion planner by modifying
f to be false for all collisions with such objects.

III. ABSTRACT FORMULATION USING POSE
REFERENCES

Although high-level specifications like pick above capture
the logical preconditions of physical actions they cannot be
used in real pick-and-place tasks. A more complete repre-
sentation of the pick action can be written with predicates
IsGP, IsMP and Obstructs that capture geometric conditions:
IsGP(p, o) holds iff p is a pose at which o can be grasped;
IsMP(traj, p1,p2) holds iff traj is a motion plan from p;
to pa; Obstructs(obj’, traj, obj) holds iff obj’ is one of the
objects obstructing a pickup of obj along traj. The argument
obj need not be an argument in Obstructs; we include it for
clarity.

pick2D(obj, gripper, pose,, pose,, traj)

precon  Empty(gripper), At(gripper, pose,),
IsGP(pose,, obj), IsMP(traj, pose,, pose,),
Yobj’— Obstructs(obj’, traj, obj)
effect  In(obj, gripper), —Empty(gripper),

At(gripper, pose,)
As noted in the Introduction, we adopt an abstract represen-
tation in which the “continuous” arguments—pose,, pose,,



and fraj in this case—range not over the reals but over finite
sets of symbolic references to continuous values.

We propose an abstract representation where continuous
variables are replaced by ones that range over finite sets
of symbols that are references to continuous values. This
substitution can be viewed as a form of quantifier elimi-
nation (the full version presents a detailed analysis from
this perspective [3]). The initial state contains a finite set
of facts linking the references to plan-independent geometric
properties they have to satisfy. Continuing with the example,
pose variables range over pose references such as initPose,
gp-obj;, and pdp_obj,_S for each object obj,. Intuitively
these references denote the gripper’s initial pose, a grasping
pose (gp) for obj; and a put-down pose (pdp) for placing
obj, on surface S. For these references, the initial state
includes facts: at(gripper, initPose), IsGP(gp-obj;, 0bj;),
IsPDP(pdp_obj,_S,0bj;, S), IsMP(traj_pose,_pose,, posey,
poses), where pose; and pose, range over the introduced
pose references. The task planner can now use the pick2D
specification defined above, but with variables that range over
discrete, symbolic references to continuous variables. This
leads to immense efficiency in representation, compared to
discretization, and makes task planning practical.

Returning to the 2D example, the preconditions of place2D
require two new predicates: IsPDL(tloc, S) indicates that
tloc is a put-down location in S and PDObstructs(obj’, traj,
obj, tloc) indicates that obj’ obstructs the trajectory traj for
placing obj at tloc. In this simple example, we assert that
once an object is placed in the region S, it does not obstruct
any pickup trajectories.
place2D(obj, gripper, pose,, pose,, traj, tloc)

precon  In(obj, gripper), At(gripper, pose,),
IsPDP(pose,, obj, tloc), IsMP(traj, pose,, pose,),
IsPDL(tloc, S),
Yobj' —~PDObstructs(obj’, traj, obj, tloc)
effect — In(obj, gripper), At(obj, tloc), Empty(gripper),
At(gripper; pose,),
Yobj', traj’' —~Obstructs(obj, traj’, obj’)

As discussed in the introduction, the exact set of obstruc-
tions (or other geometric effects) caused by a high-level
action cannot be determined using the pose references and
logical reasoning capabilities available to the task planning
layer. In our formulation the effect list for an action only
needs to be sound: it needs to contain only those effects
that can be guaranteed as a result of the action. Thus,
when a free area is not available (as in our experiments)
the place2D action’s effects would not include a removal
of all obstructions to pickup trajectories. Such effects are
determined through the interface layer if needed (Sec.IV).
Further representational optimization is possible by removing
the action arguments that do not contribute any functional-
ity to the high-level specification. Such arguments can be
reintroduced in task plans prior to refinement. For instance,
the fraj argument of pick2D doesn’t occur in its effects. It
is used in IsMP, which is not changed by any high-level
action and in Obstructs, which is changed by place2D for all
trajectories, so that the effect is independent of traj. In other

pr2Pick(obji1 gripper, pose1, posea, traj)

precon  Empty(gripper), RobotAt(posey),
IsBPFG(pose1, obj),IsGPFG(posez, obj),
IsMP(traj, pose1, posez),
V obj’ — Obstructs(obj’, traj, obj1)
effect  In(obji1, gripper), —~Empty(gripper),

Yobj', traj’
—Obstructs(obj1, traj’, obj’),
Yobj', traj’, tloc'
—PDObstructs(obj1,traj’, obj’,tloc’)
pr2PutDown(obj, gripper, posei, poses, traj, target Loc)
precon  In(obj, gripper) N\ RobotAt(pose),
IsBPFPD(pose1, obj, targetLoc),
IsGPFPD(posea, obj, targetLoc)
IsMP(traj, pose1, posez), IsSLFPD(targetLoc, obj)
Vobj' —=PDObstructs(obj’, traj, obj, tloc)
effect — In(obj, gripper), At(obj,targetLoc)
pr2Move(poser, posea, traj)
precon  RobotAt(posei), IsMP(traj, posei, posez)
effect  —RobotAt(pose1), RobotAt(posez)

Fig. 3: Action specifications for robots with articulated manipulators.

words, high-level solutions are not affected by this argument.
The domain specification can be optimized to remove such
arguments and predicates.

Our approach easily extends to real robots such as the PR2
(see Fig. 3). We can add predicates to capture base poses and
gripper poses for grasping (IsBPFG, IsGPFG) and and for
put-down (IsBPFPD, IsGPFPD). A base pose for grasping
is a pose from which there is a collision-free IK solution to
a gripper grasping pose if all movable objects are removed.
A significant point of difference in this model is that when
an object is picked up, it no longer obstructs any trajectories.
Further, the predicate IsLFPD determines whether or not a
location is one where objects can be placed. This can be true
of all locations on surfaces that can support objects.

The truth values of ground atoms over references like

Obstructs(obj,, traj_pose,_pose,,obj,,) are set to defaults
in the initial state. Domain-specific initializations can also
be generated automatically to facilitate completeness guaran-
tees [3]; during planning, interaction with the interface layer
may add or remove such atoms from a state.
Conditional Costs The approach presented above applies
seamlessly to actions whose costs depend on a finite number
of geometric predicates over possibly continuous arguments.
Further details can be found in the full version [3].

IV. TASK AND MOTION PLANNING

Before formally presenting our algorithm, we illustrate it
in action on a simple example to communicate the main
intuitions (Fig.4). This example uses the specification in
Fig.3. Consider an initial task plan obtained using a task
planner, and the search space for instantiations of the pose
references used in it (Fig.4a). In scenario 1 the interface
layer finds instantiations that correspond to an error-free
motion plan, thus solving the problem (Fig.4b). In scenario
2 the interface layer is unable to find such an instantiation
(Fig. 4c). It identifies partial solutions and attempts to extend
them using a task planner. In scenario 2a this succeeds with
the first partial motion plan (Figs.4d). The interface layer
generates logical facts capturing reasons for the failure and
updates the high-level state where this failure occurred. It
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(a) On the left we show a task plan with pose references. On the right we
show the search space of possible instantiations of these references: each row
represents the space of possible instantiations for references in the preceding
action, and each arrow represents a motion planning problem. The initial pose
has a unique instantiation as that is the robot’s current pose.
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(c) Scenario 2. The interface layer completes backtracking search and finds
no complete instantiation of poses with an error-free motion plan. The original
task plan cannot be refined into a motion plan.
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(e) Scenario 2a (ctd.). The interface layer invokes a task planner on the
updated state. The task planner generates a new plan, which now consists of
first moving by out of the way, and then picking b;. At this point the interface
layer will continue processing the new plan suffix, as described in (b).
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(b) In order to refine the task plan into a motion plan, the interface layer
needs to find instantiations for all pose references, such that there is an
error-free motion plan between each successive pair of poses. This subfigure
captures Scenario 1, where the interface layer finds a set of pose instantiations
for which there is an error-free motion plan. This completes the refinement
process and the problem has been solved for this scenario.
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(d) Scenario 2a. The interface layer selects the first possible pose instantiation
and invokes the motion planner, which finds a trajectory for the instantiation
corresponding to the first action but not for the second. The motion planner
is used to compute a trajectory allowing collisions (by removing movable
objects) and the interface layer computes obstructions along it (a motion
planner that reports possible collisions could also be used). The task level
state is updated with this information represented using symbolic references
(Sec. III), resulting in an updated high-level state.

table /

Initial pose
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Update state Instantiations

g \ AL B R ® for bpfg_b
obstructs -1
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(f) Scenario 2b. An alternate execution after scenario 2. The pose instantiation
is such that the motion planner can compute an error-free trajectory for
moving to bpfg_bl, but not from there to gpfg_bl. However, now the available
trajectory for moving to gpfg_bl is in collision with a table. The interface
layer invokes the task planner with the updated state as in 2a, but this call
fails because there is no high-level action for moving a table. The interface
layer will iterate over pose instantiations until it finds one corresponding to
a solvable high-level state. It will then proceed as in Scenario 2a.

Fig. 4: Tllustration of the interface layer’s refinement process. Action arguments have been abbreviated.

uses a task planner to obtain a new plan to solve the updated
state (4e). In scenario 2b, the updated state is found to be
unsolvable and the interface layer continues to search for
a partial motion plan that corresponds to a solvable task
planning problem.

We now describe two algorithms that constitute the in-
terface layer. Alg. 1 describes the outer loop of refinement
and regeneration of task plans that continues until a resource
limit (e.g. time) is reached. The TryRefine subroutine (Alg. 2)
describes the process of refining task plans into trajectories
representing motion plans. The implementation of these
algorithms uses careful bookkeeping to ensure that Alg. 1 can
call TryRefine to either carry out an exhaustive search for an
error-free refinement of the entire plan, or to make a sequence
of calls to it, each returning a new partial refinement and the
errors corresponding to it.

A. Overall Algorithm For the Interface

Alg. 1 begins by invoking a task planner with the given
initial state of the task and motion planning problem to
get HLPlan. In each iteration of the while loop, TryRefine

(Alg.2) is first called in line 6 in the error-free mode, which
searches for a feasible instantiation of the pose references
used in HLPlan. If this fails it is called in the partial
trajectory mode (line 8). In this mode, repeated invocations
of TryRefine return with the preconditions responsible for
failure (failCause) in finding a motion plan corresponding
to distinct pose instantiations. These errors are used to
update the task level state. This is done by applying the
effects of actions in HLPlan until failStep on the state for
which HLPlan was obtained, and then updating the resulting
state with failCause. In line 10 a task planner is invoked
with this new state. If this state is unsolvable, TryRefine
is used to compute the errors corresponding to the next
pose instantiations for the same HLPlan. If on the other
hand the state was solvable and newPlan was obtained,
the entire process repeats with the updated plan (line6).
If an upper limit on the number of attempted refinements
for HLPlan is reached (line 14) the refinement process starts
over from the first action in the available plan after resetting
the PoseGenerator used in TryRefine, and removing facts
corresponding to pose instantiations.



Algorithm 1: Task and Motion Planning Algorithm

Algorithm 2: TryRefine Subroutine

Input: State, InitialPose

1 if HLPlan not created then
2 HLPlan < callTaskPlanner(State)
3 step < 1; partialTraj <— None; pose; < InitialPose
4 while resource limit not reached do
5 if TryRefine(pose,, HLPlan, step, partialTraj,
ErrFreeMode) succeeds then
6 | return refinement
7 repeat
8 (partialTraj, pose,, failStep, failCause)
< TryRefine(pose,, HLPlan, step,
partialTraj, partialTrajMode)
9 state <— stateUpdate(State, failCause, failStep)
10 newPlan <— callTaskPlanner(state)
11 if newPlan was obtained then
12 HLPlan < HLPlan[0:failStep] + newPlan
13 pose; <— pose,; step <— failStep
until NewPlan obtained or MaxTrajCount reached
14 if MaxTrajCount reached then
15 Clear all learned facts from initial state
16 Reset PoseGenerators with new random seed
17 Reset step, partialTraj, pose, to initial values

B. Refining Task Plans into Motion Plans

We assume without loss of generality that all HLPlans are
zero-indexed lists with a NoOp in position 0.

1) TryRefine Subroutine: TryRefine (Alg.2) can be in-
voked in two modes: in ErrFreeMode it carries out an
exhaustive, backtracking search for feasible refinements of
the input HLPlan; in PartialTrajMode it iterates through
the possible instantiations for each pose reference used
in HLPlan, and for each instantiation it returns the first
action that has no error-free motion plan and the reason for
infeasibility, which can include obstructions in motion plans
and general geometric preconditions of actions. The latter are
determined by dedicated modules. Such geometric properties
are converted into logical facts in terms of pose references
(independent of geometric values).

Starting with the input InitialPose, in each iteration of
the loop, TryRefine invokes action-specific PoseGenerators
to get a possible target pose for the next action (described
below). In each iteration, if the PoseGenerator for an action
runs out of possible poses, the algorithm backtracks (lines 8-
11). If another target pose for the next action is available, a
motion planner is called with it in line 12. If motion planning
succeeds in the error-free mode, the iteration proceeds to the
action after next. Otherwise, if ErrFreeMode holds, it obtains
another target pose for the next action. If PartialTrajMode
holds, it returns the reasons for failure (line 17).

As an optimization, our implementation of Alg.2 invokes
a motion planner only if IK solutions exist.

2) Pose Generators: The PoseGenerator for an action
iterates over those values for pose references which satisfy
geometric preconditions of that action. Thus, the space of
possible values for pose generators can be constructed in
a pre-processing step in a manner similar to approaches for

Input: InitialPose, HLPlan, Step, TrajPrefix, Mode
/+ local vars, pose-gens persist across calls =/
1 if first invocation or new HLPlan then

2 index <— Step — 1; traj <— TrajPrefix

3 Initialize pose generators

4 pose, < InitialPose

5 while Step — 1 < index < length(HLPlan) do

6 axn < HLPlan[index]; nextAxn < HLPlan[index+1]

7 pose, < poseGen(nextAxn).next()
8 if pose, is not defined then
9 poseGen(nextAxn).reset()

10 pose, < poseGen(axn).next()

1 index——; traj < traj.delSuffixFor(axn)

12 else if GetMotionPlan(pose,, pose,) succeeds then

13 if index = length(HLPlan)+1 then return traj

14 traj < traj + ComputedPath; index++

15 pose, <— pose,,

16 else if Mode = PartialTrajMode then

17 ‘ return (pose,, traj, index+1, MPErrs(pose, , pose,))

precomputation of grasping poses. It is important to note that
in our implementation these pose generators are not task-
specific: the pose generator for picking up a bowl remains
the same regardless of the planning goals, other actions and
the rest of the environment.

In our implementation, PoseGenerators iterate over a finite
set of randomly sampled values that are only likely to satisfy
these properties. The random seed for generating these values
is reset when MaxTrajCount is reached in Alg.1. More
specifically, a PoseGenerator generates (a) an instantiation
of the pose references used in the action’s arguments and (b)
a target pose corresponding to each such instantiation. We
also allow the pose generator to generate a tuple of target
poses (waypoints) if needed, for multi-trajectory actions.

In this way, each PDDL action corresponds to a sequence
of poses generated by its PoseGenerator, interleaved with
gripper close and open events. The GetMotionPlan call in
TryRefine succeeds for an action with a multi-target pose
generator if it can generate a sequence of waypoints with
a feasible motion plan linking all. We discuss specific
examples of pose generators below.

PoseGenerator for pr2Pickup The pr2Pickup pose gener-
ator instantiates the pose references bpfg_obj,; and gpfg_obj;,
which need to satisfy the geometric properties IsBPFG
and IsGPFG. For bpfg_obj; it samples base poses oriented
towards obj; in an annulus around the object. For gpfg_obj;,
we need poses at which closing the gripper will result in a
stable grasp of the object. Computation of effective grasping
poses is an independent problem; we assume that such poses
are known for each object class (e.g., bowl, can, tray etc.),
and used an approach where every grasp pose corresponds
to a pre-grasp pose, and a raise pose. The pose generator
generates possible values for all of the intermediate poses as
waypoints, while the arm always returns to a side pose at the
end to enable an unobstructed view from the physical PR2’s
cameras. The latter could be avoided through a framework
incorporating partial observability.



PoseGenerator for pr2PutDown  The pose generator
for pr2PutDown instantiates pose references of the form
tloc (an abbreviation for targetloc), bpfpd_obj, _tloc, and
gpfpd_obj,_tloc to satisfy the properties IsBPFPD and Is-
GPFPD. tloc values are sampled locations on supporting
surfaces within a certain radius of the current base pose;
values for bpfpd_obj,_tloc are obtained by sampling base
poses in an annulus around tloc and oriented towards it.
Gripper put-down poses of the form gpfpd_obj,_tloc are
sampled by computing possible grasping poses assuming the
object was at tloc.

C. Completeness

We present a sufficient condition under which our ap-
proach is guaranteed to find a solution if one exists.

Definition 1: A set of actions is uniform wrt a goal g and
a set of predicates R if for every r € R,

1) Occurrences of r in action preconditions and goal are

either always positive, or always negative.

2) Actions can only add r-atoms with the same sign as

those used in preconditions and the goal g.

Theorem 1: Let P = (A, sp,g) be a planning problem
such that there are no reachable dead-end states w.r.t. g and
A is a set of actions whose descriptions are sound w.r.t.
continuous effects and uniform w.r.t. the g and the geometric
predicates used in the domain. Let G be the pose generator
for the pose references used in sg. If all the calls to the
motion planner terminate, then Alg.1 will find a sequence
of motion plans solving P if one exists using the sound
descriptions and the pose references captured by G.

Intuitively, the result follows because under the premises,
every time a state update takes place, missing geometric facts
are added to the state and can only be removed by actions
but not added again. We refer the reader to the full version
[3] for the proof. Note that the conditions of Thm. 1 are not
necessary. In particular, our empirical evaluation shows the
algorithm succeeding in a number of tasks that do not satisfy
the uniformity condition.

V. EMPIRICAL EVALUATION

We implemented the proposed approach using the Open-
RAVE simulator [4]. In all of our experiments we used
Trajopt (multi-init mode), which is a state-of-the-art motion
planner that uses sequential convex optimization to compute
collision avoiding trajectories [5]. For every motion planning
query, Trajopt returns a trajectory with a cost. A wrapper
script determined collisions (if any) along the returned tra-
jectory. We used two task planners, FF [6] and the IPC
2011 version of FD [7] in seg—opt—-1mcut mode, which
makes it a cost-optimal planner. FD was not appropriate for
the first two tasks described below since they used negative
preconditions and FD has known performance issues with
negative preconditions. Domain compilations for eliminat-
ing negative preconditions are possible but impractical as
they lead to large numbers of facts in the initial problem
specifications. Since our system can work with any classical
planner, we used FF for tasks where costs were not a concern.

All the problems (Fig.5) used an ambidextrous version of
the PR2 actions shown in Fig.3, with task-specific actions
such as placing items on a tray and opening a drawer.
All experiments were carried out on Intel Core i7-4770K
machines with 16GB RAM, with two tests running in parallel
at a time. All the success rates and times are summarized
in Table I. As a baseline, we attempted to solve these
problems using a discretization at the task level with all
the predicates set at defaults. This effectively removed all
geometric constraints. However the planners could not find
solutions to these problems after running for more than
25 minutes. The source code and videos for all tasks are
available at the URL noted in the introduction [8].

A. Object in a Drawer

In this domain the robot needs to open a drawer and
retrieve an object inside it. An object in front of the drawer
prevents its complete opening. The inner object’s placement
determines where the robot should place itself to avoid colli-
sions with the outer object, and whether it is possible to solve
the task without moving the outer object. This task illustrates
the generality of our approach in going beyond pick-and-
place tasks. We modeled it using an open-drawer action,
whose pose generator generates random bounded values for
the pull-distance. In the solution plans, our system chose to
position the robot so as to open the drawer and access the
inner object without moving the obstruction when possible.
The results show average solution times for situations where
removing the obstruction was optional (O) and necessary (N).

B. Cluttered Table

In this task, the objective is to pick up a target object
from a cluttered table. There is no designated free space for
placing objects, so the planning process needs to find spots
for placing obstructing objects. We increased the number of
objects up to 40 on a table of fixed dimensions. Fig. 6 shows
the table with 40 objects. In order to make the problem more
challenging, we restricted pickups to only use side-grasps.
The robot’s thick grippers create several obstructions and
many of the pose instantiations lead to cyclic obstructions.
Since placing objects adds obstructions, this task does not
satisfy the premises of Thm. 1. In addition to the summarized
results in Table I, Fig.7 shows a histogram of the solution
times. To the best of our knowledge, no other approach has

Problem %Solved in 600s  Avg. Solution Time for Solved (s)
Drawer (O) 100 34
Drawer (N) 100 185
Clutter-15 100 32
Clutter-20 94 57
Clutter-25 90 69
Clutter-30 84 77
Clutter-35 67 71
Clutter-40 63 68
Dinner-2 100 63
Dinner-4 100 133
Dinner-6 100 209

TABLE I: Summary of the results. All numbers except for the cluttered
table problem are from 10 randomly generated problems. Cluttered table
problems showed greater variance and are averages of 100 randomly
generated problems for each number of objects.
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Fig. 5: Test domains from L to R: drawer domain, cluttered table with 40 objects where the dark object denotes the target object, and dinner layout. The
rightmost images show the PR2 using the tray and completing the dinner layout.
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Fig. 6: Some of the grasps executed while solving an instance of the 40 object cluttered table with the dark object as the target.
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Fig. 77: Histograms of solution times for problems solved within 600s in
the cluttered table domain. Y-axis is in log-scale.

been shown to perform at this level on randomly generated
constrained problems without using specialized geometric
reasoning routines.

C. Laying Out a Table for Dinner

The goal of this task is to lay out a dinner table. A
tray is available, but not necessary for transportation. We
modeled a scenario where the initial location of objects was
far from the target location by asserting that these locations
were in different rooms and associating a high cost to all
task-level moves across rooms. The geometric properties
in this domain were stackability and relative positions of
objects (see below). Stackability was determined using object
diameters. The test scenarios had 2, 4 and 6 objects (cups
and bowls with equal numbers of each), placed at random
locations on the table. Objects had random names to prevent
the task planner from favoring any particular stacking order.
The initial task planner specification allowed all objects to be
stacked on each other. Optimal task planning is hard in this
domain, as the number of reachable states exceeds 3 million
with just 6 objects. We used FD as the task planner since
plan cost was a consideration.

Our system appropriately used the tray to transport items.
It used inefficient movements when the robot picked objects
on its left with its right hand (and vice versa) as the task
planner chose hands arbitrarily. We made two modifications
to address this, both of which increase the complexity
of the task planning problem by increasing its branching
factor. We used a conditional cost formulation (Sec.III) to
penalize actions which accessed an object or a location on
the right (left) with the left (right) hand. We also added a

Handoff action in the domain, which transfered an object
from one hand to the other. The resulting behavior, though
not guaranteed to be optimal, showed the system determining
which hand to use for a particular grasp or putdown and
whether or not a handoff should be done. To the best of
our knowledge, no other approach has been shown to solve
task and motion planning problems with such large high-
level state spaces without using task-specific heuristics or
knowledge beyond the set of primitive task-level actions.

D. Real-World Validation

For real-world experiments we used ROS packages for
detecting object and table poses (ar_track_alvar) and
for SLAM (hector_slam). A video of the PR2 laying out
the table using this system is available at the URL noted in
the introduction.

VI. RELATED WORK

Our approach builds upon the vast literature of related
work in robotics and planning. In particular, we leverage
the immense advances made in task planning and motion
planning. Various researchers have investigated the problem
of combining task and motion planning [9]-[11]. However,
few approaches are able to utilize off-the-shelf task planners
and motion planners and most rely on specially designed
task and/or motion planning algorithms. Existing approaches
do not address the problem of correcting inaccurate task
planning descriptions without resorting to discretization. In
contrast, our approach (a) represents geometric information
in a form that task planners can use and (b) corrects the task
planner’s representation with information gained through
geometric reasoning, without discretization.

Cambon et al. [1] propose a framework that bears sim-
ilarity to ours in using location references. The references
in their approach however are not developed into a sys-
tem for communicating geometric information to the task
planner. Their framework requires the motion planner to use
probabilistic roadmaps (PRMs) [12] with one roadmap per
movable object, and per permutation of a movable object in
each gripper for robots like the PR2. The utilization of task
plans is minimal: only their lengths are used as inputs in a
heuristic function for a separate search algorithm. However,



their algorithm is probabilistically complete. Kaelbling et
al. [13] present a regression-based framework. They utilize as
inputs a task hierarchy, action-specific regression functions
and generators, and inferential attachments for carrying out
limited logical reasoning. The overall framework is com-
plete if the domain is reversible (a necessary condition for
reversibility is that no dead-end state should be reachable
from the initial task planning state), and the primitive actions,
which include motion planner invocations, have sound and
complete precondition and effect specifications. However,
these conditions are only sufficient and not necessary.

Grasping objects in a cluttered environment is an open
problem in robotics. Dogar et al. [14] propose replacing
pick actions with push-grasps. This would be promising as a
primitive action in our overall framework. Techniques have
also been developed for navigation among movable obstacles
(e.g., [15]), but they do not address the general problem of
combining task and motion planning.

Reinvoking task planners relates to replanning for partially
observable or non-deterministic environments [16], [17].
However, the focus of this paper is on the substantially
different problem of providing the task planner with in-
formation gained through geometric reasoning. An alternate
representation for dealing with large sets of relevant facts in
the initial state would be to treat them as initially unknown
and use a partially observable planner with non-deterministic
“sensing” actions [18]. However, offline contingent solutions
typically don’t exist for all possible truth values of geometric
predicates. Wolfe et al. [19] use angelic hierarchical planning
to define a hierarchy of high-level actions over primitive
actions. Our framework could be viewed as using an angelic
interpretation: pose references in task plans are assumed to
have a value that satisfies the preconditions, and the interface
layer attempts to find such values. Planning modulo theories
(PMT) [20] and planning with semantic attachments [21]
also address related problems. In contrast to our objective
of utilizing arbitrary task planners, these approaches do not
use a discrete task planner. Instead, they include continuous
fluents in the task planning specification and utilize search al-
gorithms that make calls to external subroutines for comput-
ing the values of such fluents. Erdem et al. [22] also extend
the task planner (an ASP solver) with external predicates
implemented as arbitrary programs. They use a grid-based
discretized representation for representing the task planning
problem as well as for the geometric information gained at
the continuous planning level. In contrast, this paper was
focused on a method for communicating such information
to an arbitrary task planner, without discretization.

VII. CONCLUSIONS

We presented an approach for combined task and motion
planning that is able to solve non-trivial robot planning prob-
lems without using task-specific heuristics or any hierarchical
knowledge beyond the primitive PDDL actions. Our system
works with off-the-shelf task planners and motion planners,
and will therefore scale automatically with advances in
either field. We also presented a sufficient, but not necessary

condition for completeness. We also demonstrated that our
system works in several non-trivial, randomly generated tasks
where this condition is not met and validated it in the real
world with a PR2 robot.
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