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Variable Selection Via Gibbs Sampling
EDWARD |. GEORGE and ROBERT E. McCULLOCH*

A crucial problem in building a multiple regression model is the selection of predictors to include. The main thrust of this article is
to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure entails
embedding the regression setup in a hierarchical normal mixture model where latent variables are used to identify subset choices. In
this framework the promising subsets of predictors can be identified as those with higher posterior probability. The computational
burden is then alleviated by using the Gibbs sampler to indirectly sample from this multinomial posterior distribution on the set of
possible subset choices. Those subsets with higher probability—the promising ones—can then be identified by their more frequent

appearance in the Gibbs sample.

KEY WORDS: Data augmentation; Hierarchical Bayes; Latent variables; Mixture; Multiple regression.

A crucial problem in building a multiple regression model
is the selection of predictors to include. More precisely, given
a dependent variable Y and a set of potential predictors X,
..., X,, the problem is to find and fit the “best” model of
the form ¥ = XTBY + -+ - + X*B* + ¢, where XT, ...,
X7 is a “selected” subset of X, ..., X,. A wide variety of
selection procedures based on a comparison of all 22 possible
submodels have been proposed, including AIC, Cp, and BIC.
Unfortunately, when p is large, the computational require-
ments for these procedures can be prohibitive. To mitigate
the computational issue, practitioners typically use heuristic
methods to restrict attention to a smaller number of potential
subsets. This is the idea behind, for example, stepwise pro-
cedures, such as forward selection or backward elimination,
which sequentially include or exclude variables based on R?
considerations. Miller (1990) provided a comprehensive
summary and bibliography of these procedures.

The main thrust of this article is to develop a procedure
that we call SSVS (stochastic search variable selection) to
select “promising” subsets of X, . . . , X, for further consid-
eration. SSVS is based on embedding the entire regression
setup in a hierarchical Bayes normal mixture model, where
latent variables are used to identify subset choices. In this
framework the promising subsets of predictors can be iden-
tified as those with higher posterior probability. SSVS then
proceeds by using Gibbs sampling to indirectly sample from
this multinomial posterior distribution on the set of possible
subset choices. Those subsets with higher probability—the
promising ones—can then be identified by their more fre-
quent appearance in the Gibbs sample. In this way SSVS
avoids the overwhelming problem of calculating the posterior
probabilities of all 27 subsets.

SSVS is controlled by various tuning parameters that can
be prespecified by the user. With different prespecifications,
the user can address the particular goals of variable selection
that are appropriate for the problem under consideration.
Such goals may include, for example, the search for a par-
simonious model that does not drastically increase the error
of approximation or the elimination of ensembles of variables
that are unimportant compared to their sampling uncer-
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tainty. A distinguishing feature of SSVS is that it allows the
user to let the practical importance of a variable influence
its selection, rather than just its statistical significance.

The background literature for SSVS is based on two lines
of research. First, our use of a hierarchical Bayes model to
identify the “promising”™ variables has its roots in the liter-
ature on Bayesian model discrimination. Some of the work
related to our approach includes Lempers (1971), Atkinson
(1978), Perrichi (1984), Smith and Spiegelhalter (1980),
Spiegelhalter and Smith (1982), Zellner (1984), Poirier
(1985), Stewart (1987), and especially Mitchell and Beau-
champ (1988). The second line of background research con-
cerns Gibbs sampling; see Casella and George (1992) for an
elementary introduction. Papers particularly relevant to our
use of Gibbs sampling include Diebolt and Robert (in press),
Gelfand and Smith (1990), Gelfand, Hills, Racine-Poon, and
Smith (1990), Tanner and Wong (1987), and Verdinelli and
Wasserman (1991).

The plan of this article is as follows. In Section 1 we define
and motivate the hierarchical framework that serves as the
basis for SSVS. In Section 2 we show how this hierarchical
model can be used to identify the most promising regression
models, and Section 3 we show how SSVS via the Gibbs
sampler can efficiently identify these promising subsets. In
Section 4 we illustrate SSVS on simulated examples, and in
Section 5 we apply SSVS to real data sets.

1. A HIERARCHICAL MODEL
FOR VARIABLE SELECTION

For the regression situation involving the observation of
a dependent variable Y and a set of potential predictors X,
..., X,, we consider the canonical regression setup

Y |8, 0 ~ Ny(XB, 0*1), 0]

where Yisn X 1, X =[X,,...,X,]JisnXp,B8=(B, ...,
B,)’, and ¢? is a scalar. Both 8 and o? are considered un-
known. For the model (1), selecting a subset of predictors is
equivalent to setting to O those 8,’s corresponding to the
nonselected predictors.

We shall assume throughout that X, . . . , X, contains no
variable that would be included in every possible model. If
this is not the case for some subset of X, ..., X,, say X¥,
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..., X* then X¥, ..., X* should be removed from X,
..., X,, and Y and the remaining X; should be replaced
by the residual vectors (I — X*(X*'X*)'X*)Y and
(I — X*(X*'X*)"'X*)X;, (X* = [XT, ..., X*]). This
reduction can be motivated from a Bayesian perspective as
initially integrating out the coefficients corresponding to
X T, ..., X * with respect to the uniform prior (Lebesgue
measure). For example, if an intercept was to be included
in every model (as is usually the case), then one should ex-
clude 1, =[1, ..., 1] from the set of potential predictors
and replace Y and the X; by their centered counterparts
(I -1,1,/n)Y and (I — 1,1,/n)X;. (Note that after such
a transformation (1) no longer holds, because the compo-
nents of Y would not be independent. As it turns out, this
does not matter because the likelihood function of 3 is the
same as if one had assumed independence.)

To extract information relevant to variable selection, we
consider (1) as part of a larger hierarchical model. The key
feature of this hierarchical model is that each component of
B is modeled as having come from a mixture of two normal
distributions with different variances. A similar setup in this
context was considered by Mitchell and Beauchamp (1988),
who instead used ““spike and slab” mixtures. An important
distinction of our approach is that we do not put a probability
mass on 3; = 0.

By introducing the latent variable v; = 0 or 1, we represent
our normal mixture by

Bilvi ~ (1 =¥)NO, 7}) + viN(, cir?) 2

and
P(yi=1)=1-P(y; =0)=p,. (3

As will be seen, the introduction of v; facilitates our analysis
of the problem. Our use of it is based on the data augmen-
tation idea of Tanner and Wong (1987). Diebolt and Robert
(in press) have also successfully used this approach in the
mixture context.

When v, =0, 8; ~ N(0,72), and when v; = 1, 8; ~ N(0,
c?r#). Our interpretation of this formulation is as follows.
First, we set 7, (>0) small so that if y; = 0, then 8; would
probably be so small that it could be “safely” estimated by
0. Second, we set ¢; large (¢; > 1 always) so that if y; = 1,
then a non-0 estimate of 3; should probably be included in
the final model. Specific choices of 7; and ¢; for this purpose
are recommended in the next section. Based on this inter-
pretation, p; may be thought of as the prior probability that
B; will require a non-0 estimate, or equivalently that X;
should be included in the model.

To obtain (2) as the prior for 3;|v;, we use a multivariate
normal prior

Bly ~ N,(0, D,RD,),

where v = (v,, ...
and

C))

, ¥p), R is the prior correlation matrix,

D, = diag[a;7y, . . (%)

with a; = 1 if y; = 0 and a; = ¢; if v; = 1. D, determines
the scaling of the prior covariance matrix in such a way that
(2) is satisfied. Here too, we set 7y, ..., 7,smalland ¢y, . . .,

S ApTpl,
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¢, large (¢; > 1 always) so that under (4), those 3; for which
~:; = 0 will tend to be clustered around 0, whereas those 3;
for which v; = 1 will tend to be dispersed. Recommended
choices for the constants 7, ..., 7,and ¢y, . . ., ¢, and the
prior correlation matrix R are discussed in the next section.

The Bernoulli model (3) is obtained as the marginal of
any discrete distribution f(4y) with support on the 27 possible
values of v. But for the purpose of variable selection, f(7)
should be the statistician’s prior probability that vy correctly
identifies (by v; = 1) exactly those 3; that should obtain non-
0 estimates in the final model. Coupled with f(+), the prior
on @ is a finite mixture of multivariate normal priors.

The final ingredient in our hierarchical model is a prior
on the residual variance ¢2. For this purpose we use the
inverse gamma conjugate prior

|y ~ IG(1,/2, 1,\,/2), ©)

which is equivalent to »,\,/0?> ~ X7 . Note that », and X,
may depend on 7 to incorporate dependence between 8 and
o?. For example, if the regression were being used to ap-
proximate a complex relationship, then the user might expect
that o2 would decrease as the dimension of 8 (= the number
of non-0 components of v) increased.

2. |IDENTIFYING THE BEST MODELS WITH f(v|Y)

Our main reason for embedding the normal linear model
(1) in the hierarchical mixture model of Section 1 is to obtain
the marginal posterior distribution f(v|Y) oc f(Y |7)f(7),
which contains the information relevant to variable selection.
As described in Section 1, f(7) may be interpreted as the
statistician’s prior probability that the X;’s corresponding to
non-0 components of v (and only those X;’s), should be
included in the final model. Based on the data Y, the pos-
terior f(vy|Y ) updates the prior probabilities on each of the
27 possible values of 7. Identifying each v with a submodel
via (vy; = 1) & (X is included), those «y with higher posterior
probability f(v|Y ) identify the submodels supported most
by the data and the statistician’s prior information. Thus
f(«]Y) provides a ranking that can be used to select the
more promising submodels for further investigation. We now
proceed to discuss the choice of the prior f( %), the constants
Ti,...,7pand ¢y, . . ., ¢, for D, in (5), the prior correlation
matrix R in (4), and », and A, in (6). The ultimate value of
the ranking provided by f(7v|Y ) depends on these choices.

2.1 Choosing f(7)

The choice of f(v) should incorporate any available prior
information about which subsets of Xj, ..., X, should be
included in the final model. Although this may seem difficult
with 27 possible choices, especially with large p, symmetry
considerations may simplify this task. For example, a rea-
sonable choice might have the v;’s independent with mar-
ginal distributions (3), so that

S =11 p7"(1 = pp)—. (7

Although (7) implies that the inclusion of X; is independent
of the inclusion of X; for all i # j, we found it to work well
in various situations. The uniform or “indifference” prior
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f(v) = 277 is the special case of (7) where each X; has an
equal chance (p; = 1) of being included. Alternatively, one
may wish to weight more according to model size by using
S(v) = wiy(15)7", where w,,, is the prior probability of a
model of size |v|. By setting w, large for smaller |+, one
can assign more weight to parsimonious models.

2.2 Choosing 7; and ¢;

The choice of 7, in (2) and (5) should be such that if 3;
~ N(0, 77), then g, can be “safely” replaced by 0. Because
|B:| = 37, with high probability, as a rough guide the sta-
tistician may want to set 37; equal to the maximum size at
which 8; would, for practical purposes, be equivalent to O.
Unfortunately, this may not be easy or even possible, because
ascertaining this maximum requires understanding the po-
tential effect of §; in the final model. Thus alternative semi-
automatic choices are discussed later in this section.

The choice of ¢; (>1) in (2) and (5) should be such that
if B; ~ N(O, c¢?7?), then a non-0 estimate of 8; should be
included in the final model. From a subjectivist Bayesian
standpoint, one would want to choose c¢; large enough to
give support to values of 3; that are substantively different
from 0, but not so large that unrealistic values of 8; are sup-
ported. To help guide the choice of ¢;, it may be useful to
observe that the densities of N(0, 7?) and N(0, c?7?) in-
tersect at £(c;)7; when £(c;) = V2(log ¢;)c?/(¢? — 1). This
implies that the density of N(0, c¢?7?) will be larger than the
density of N(0, 72)iff |8;| > &(c;)7;. Note that this inter-
section point increases very slowly; for example, the choices
¢; = 10, 100, 1,000, 10,000, 100,000 correspond to £(c;)
~ 2.1, 3.1, 3.7,4.3, 4.8. It may also be useful to observe that
¢; is the ratio of the heights of N(0, 7?) and N(0, ¢?7?) at 0.
Thus ¢; can be interpreted as the prior odds that X; should
be excluded when 3; is very close to 0.

A semiautomatic approach to selecting 7; and ¢, may be
obtained by considering the intersection point and relative
heights at 0 of the marginal densities (5, | ag,vi =0) ~ N(O,
of, + 77) and (B;|og, vi = 1) ~ N(O, o3, + c?r2). Let
t;p, denote the intersection point, where o3, is the variance
of the least squares estimator 3,. Because

P(v: = 116, 05) > D (=P(v; = 1)) iﬁ‘éi/aﬂ, >t, (8)

the point #; may be thought of as the threshold at which the
¢ statistic corresponds to an increased marginal probability
that X should be included in the model. Small #; would tend
to favor more saturated models, whereas large #; would yield
more parsimonious models. The relative heights of the mar-
ginal densities of §; at 0 is easily seen to be

2 2 2
_ O’B’/T,' +C[
ry = _2/ 2“_+ 1 .
G'ﬂ, Ti

The value of r; is the marginal posterior probability of in-
cluding X; when §8; = 0. The reader should be cautioned
that this univariate perspective may be slightly misleading,
because our problem is fundamentally multivariate in nature.
For example, model choice is indicated by P(v|8, o) rather
than by the individual P(y; |6;, 05).

The values of ; and r; in (8) and (9) are functions only of

(€))
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o5,/ 7, and ¢,. Thus one might consider fixing o5,/7, and ¢;
to obtain desired value of #; and r;. (g, is the observed stan-
dard error commonly associated with the least squares es-
timate 3;.) This approach also has the desirable feature of
being invariant under rescaling of the X,’s. Some of the
choices we consider in the examples are (a4,/7;, ¢;) = (1, 5),
(1, 10), (10, 100), (10, 500), which yield (¢;, r,) ~ (2.4, 1.7),
(2.7, 2.3), (2.1, 3.2), (2.8, 6.8). The marginal densities cor-
responding to these choices are displayed in Figure 1. Note
that as o5 /7; and ¢; are increased, the separation between
the two distributions becomes sharper.

In setting a4 /7;, it is important to distinguish between
the statistical significance of 8,, which is captured by ay,,
and the practical significance of 3;, which is captured by 7,.
For example, if g5/7; were set large, then 8; could be in-
cluded in the model even when its sampling uncertainty
overwhelmed its importance. On the other hand, if 65 /7;
were set small, this would avoid including unimportant vari-
ables just because their effects were measured well.

It may be most productive to regard 7; and ¢, as tuning
constants that calibrate the information in f(+y]|Y ). Rather
than treat any particular settings as hard and fast rules that
guarantee good results, the user should consider varying these
settings to extract more information. This strategy is illus-
trated on examples in Sections 4 and 5. Some caution might
be exercised, however, because it follows from (2) and (3)

c =100

/

______________

-4 2 0 2 4 o

Figure 1. The Marginals N(0, ¢2 + 72) and N(0, ¢2 + ¢?r?)(c /7, C)
=(1,5), (1, 10), (10, 100), (10, 500).
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that for0 < p; <1and 8; # 0, lim,,oP(v; = 1|8;) = 1 for
fixed ¢;7; and lim ., P(y; = 1|8;) = O for fixed ;.

2.3 ChoosingR

The matrix R is the prior correlation matrix of 8 condi-
tionally on 7. As in the case of choosing 7; and ¢;,, we regard
R as a tuning constant that calibrates the information in
f(v1Y). In choosing R, it may be useful to consider its effect
on the posterior covariance matrix of 8 under f(8|Y, 7, 7v),
namely

(¢72X'X + D;'R™'D;") ", (10)

Of particular interest may be the special cases R = I and R
oc (X'X)™!, which can be thought of as extremes. When R
= I, the components of 8 are independent under f(8|7).
When R oc (X'X) ™!, the prior correlation is identical to the
design correlation, a generalization of the g prior of Zellner
(1986). From (10), one can see that under R = I the posterior
correlations will be less than those of the design correlation,
whereas under R oc (X'X) ™! the posterior correlations will
be identical to those of the design correlation. In cases of
highly collinear regressors, one might also consider choices
of Rand 7y, ..., 7, to reduce ill-conditioning of the posterior
covariance (see Soofi 1990). Finally, one may want to con-
sider putting a prior on R, although this may greatly increase
the computational requirements of our procedure.

2.4 Choosing v, and ),

In choosing », and A, for the inverse gamma prior (6),
one can make use of the interpretation that these carry in-
formation from an imaginary prior experiment where v, is
the number of observations and [»,/(», — 2)] )\, is the prior
estimate of ¢. Typically, these will be constant (i.e., v, = v
and A\, = X or will depend at most on v only through |v]|,
the number of non-0 components of . For example, one
might let [v,/(v, — 2)]\, be a decreasing function of |7v|
when it is expected that higher-dimensional models will ob-
tain a smaller o2. Finally, as will be seen from the posterior
(14), the choice v, = 0 (and any A,) can be used to represent
ignorance.

3. GIBBS SAMPLING THE BEST SUBSETS

As described in the preceding section, the first part of SSVS
entails specifying the hierarchical normal mixture model so
that the posterior f(v|Y) puts most weight on the more
“promising” subsets of predictors. The second part, described
here, entails extracting this information. Rather than cal-
culate all 27 posterior probabilities in (v |Y ), which would
involve the same kind of computational burden we originally
sought to avoid, SSVS uses the Gibbs sampler to generate a
sequence
Y7, (11)
which in many cases converges rapidly in distribution to vy
~ f(v|Y). Such a sequence can be obtained quickly and
efficiently, with far less effort than required to compute the
entire posterior. Furthermore—and this is the crucial ob-
servation—the sequence in (11) will, with high probability

v, ...
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in many cases, contain exactly the information relevant to
variable selection. This is because those v with highest prob-
ability will also appear most frequently and hence will be
easiest to identify. Those v that appear infrequently or not
at all are simply not of interest and can be disregarded.

SSVS implements the Gibbs sampler to generate an aux-
iliary “Gibbs sequence”

609009707319017719"'9Bj)aj97j)"'3 (12)
an ergodic Markov chain in which (11) is embedded. Ex-
cept for B° and ¢°, which are initialized to be the least
squares estimates of (1), and v°, which is initialized as v°
= (1, 1, ..., 1), the subsequent values of 87, ¢/, v/ are
obtained by successively simulating values according to the
following iterated sampling scheme. Fortunately, this scheme
entails simulations that can be done fast and efficiently.

To begin, the coefficient vector 8/ is obtained by sampling
from
B~ f(B1Y, a7, v/
= Ny(A,-1(a/") X' X fis, A1), (13)
where

A1 =((c/)2X'X + D, -R™'D )7L
Note that D' = diag[(a;7,)7", ..., (a,7,) '] s easily cal-
culated. Next, the variance ¢ is obtained by sampling from
o/ ~f(a’|Y, 87, v'7)

_ IG(n +v, Y - X8| + Vi1 Ay st
2 ’ 2

(13a)

), (14)

the updated inverse gamma distribution from (6).

Finally, the vector v is obtained componentwise by sam-
pling consecutively (and preferably in random order) from
the conditional distribution

711 Nf(‘yjl 'Y: Bj’ Uj’ ‘Yj(l)) :f(yjl |ﬂja Uja ‘Yj(l))’ (15)

where ¥4 = (Y4, ..., Y1, Y1, - - .5 ¥5Y). Notice that
the distribution (15) does not depend on Y. This substantial
simplification reduces computational requirements and al-
lows for faster convergence of the subsequence (11). The
nondependence of (15) on Y results from the hierarchical
structure where 4 affects Y only through 8, a general feature
of hierarchical models pointed out by Morris (1987).

Each distribution (15) is Bernoulli with probability

: . . . a
P(yi=1|87, 0’,‘7’(i>)=m, (16)

where
a=fB)v5,vi=1
X f(01¥ 5, vi = Dy, vi = 1) (162)
and
b= 1817 v} = 0)
X £/ 17 %y 1 = 01 (¥ %0, vi = 0).  (16b)

It is worth noting that under the prior (7) on v, and when
the prior parameters for o in (6) are constant (v, = v and A\,
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= \), (16) can be obtained more simply by

a=fB17%, v = Dpi (16c)

and
b= 18’174, v = 0)(1 — p;).

Furthermore, under the choice of prior correlation R = I in
(4), the dependence on v%;, throughout (16) may be elimi-
nated, further simplifying the calculations required.

By repeated successive sampling from (13), (14), and (15),
the Gibbs sequence (12) is obtained. It follows from Diebolt
and Robert (in press) that the subsequence (11) is a homo-
geneous ergodic Markov chain that converges geometrically
to its unique stationary distribution f(vy|Y). A practical
consequence of this property is that as the length of the sub-
sequence (11) is increased, the empirical distribution of the
realized values of ¥ will converge to the actual posterior
f(¥]Y). Our experience has been that convergence appears
to occur rapidly when f(v|Y) is peaked, putting most of its
mass on a few models. This is precisely when f (v |Y ) carries
the most information about model selection.

At this point the information relevant to variable selection
is contained in the sequence (11). In particular, after the
sequence has reached approximate stationarity, the values
of v corresponding to the most promising subsets of X, . . .,
X, will appear with the highest frequency, because it is just
those values which have largest probability under f(v|Y).
Thus a simple tabulation of the high-frequency values of ¥
can be used to identify the corresponding subsets of predictors
as potentially promising. The potentially promising subsets
of predictors may then be identified with these high-
frequency values of v. The low-frequency or zero-frequency
values of v may simply be ignored, because these correspond
to the least promising models. Note that if no high-frequency
values of v appeared in (11), then we would conclude that
either m is too small or the data contain little information
for discriminating between models.

It may also be fruitful to go beyond a simple tabulation
of the high-frequency v values in the sequence (11). For
example, it is tempting to consider the marginal frequency
of v; = 1 as evidence for the inclusion of X;. Unfortunately,
this simplifying approach can be misleading unless there is
little or no correlation among X, ..., X,. In general, in-
clusion of X; must be considered jointly with other variables,
and so it may be better to look at conditional frequencies.
Other approaches might include the exploratory data meth-
ods discussed in Tukey (1977), such as product-ratio plots
of the v frequency counts. Finally, one might consider a
second iteration of SSVS with a reduced set of variables based
on the first run.

Note that although there is dependence on initial values
in the sequence, we do not recommend ignoring the first few
values as is often done in applications of the Gibbs sampler.
Essentially, we regard SSVS as exploratory and just want to
ascertain which v may have large f(v|Y ). We do recommend
that m be chosen as large as is economically feasible to mit-
igate any bias in the frequency estimates due to dependence
in (11).

(16d)
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Finally, it should be mentioned that convergence of (11)
can be very slow in certain situations. For example, this may
occur when 7; is chosen very small and ¢; is chosen very
large so that the prior for 3; is close to a “spike and slab”
mixture. Apparently, this setup can lead to very small tran-
sition probabilities for v in the Gibbs sequence to go from
0 to 1 or from 1 to 0. This phenomenon can be further
exacerbated by the presence of more than one model with
high probability under f(v|Y) with very small transition
probabilities between models. In these cases the Gibbs se-
quence frequencies may take a long time to converge to
f(v|Y). To avoid such problems, we recommend experi-
mentation with various values for 7; and ¢;.

4. SIMULATED EXAMPLES

In this section we illustrate the performance of SSVS on
simulated examples. Example 4.1 treats small problems in-
volving five potential predictors. Example 4.2 considers a
large problem with 60 potential predictors, which is currently
about double the maximum size at which conventional all-
subsets regression strategies can be carried out (see Miller
1990). This example demonstrates that SSVS is a feasible
alternative that performs sensibly in such large problems.

Example 4.1. This example considers two simple, vari-
able selection problems with p = 5 predictors of length »
= 60. In Problem 1, the predictors were obtained as inde-
pendent standard normal vectors, X, ..., X5 iid ~ Ng (0,
1), so that they were practically uncorrelated. The dependent
variable was generated according to the model

Y = X, + 1.2X;5 + e, (17)

where ¢ ~ Ngo(0, ¢2I) with ¢ = 2.5. Thus 8 = (0, 0, 0, 1,
1.2)". The least squares estimates for these data were ]
= (.03, —.45, .23, .84, 1.29)', with standard errors o,
= (.36, .40, .36, .31, .33) and ¢ = 2.58.

Problem 2 is identical to Problem 1, except that X is
replaced by X5 = X5 + .15Z where Z ~ N (0, 1), yielding
corr(Xs, Xs) = .989. This X7 is a substantial proxy for Xs.
Problem 2 is meant to illustrate how SSVS performs in the
presence of extreme collinearity. The least squares estimates
for these data were 8§ = (.01, —.38, .34, .83, .95)’, with stan-
dard errors o5 = (.35, .39, 2.33, .31, 2.35)" and o = 2.59.
Although the coefficient estimates are nearly the same as
those obtained in Problem 1, the standard errors for 85 and
@5 are substantially increased due to the induced collinearity.

We applied SSVS to both problems with the indifference
prior f(Y)=3%71,=++-=715=.33,¢,=--- =¢5 = 10,
R =1, and », = 0. This setting yields d5/7; =~ 1, which,
coupled with ¢; = 10, corresponds to one of the settings in
Figure 1. For this setting the threshold for inclusion in the
model occurs at coefficient estimates with a ¢ statistic of about
2.7. A sample of m = 5,000 observations of the Gibbs se-
quence (11) was then simulated and tabulated. Table 1 dis-
plays the four highest-frequency values of vy that appeared
in each problem.

For Problem 1, the two most frequent models—Y = f(X;s)
and Y = f(X4, Xs)—appeared with frequencies of 25.8%
and 24.2%. Although 84 = 1 is non-0, X, was often excluded
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Table 1. High Frequency Models, Example 4.1
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e ~ Nip(0, ¢2I) with ¢ = 2, and the coefficients 8

= (B1, ..., Bso) were set at (B, ..., Bis) = (0, ..., 0),
Problom ! Problom 2 (Bros -+ Bs0) = (L ooy 1), (Bsts oo os Bas) = 2 ..., 2),

Model , Model _and (Bas, - - -, Be0) = (3, ..., 3).
variables Proportion variables Proportion We applied SSVS with the indifference prior f(v)
5 258 3 146 = 3% R =1, », = 0, and the four automatic settings
gg -g;g 354 '(1)33 (0g,/7i5 ci) = (1, 5), (1, 10), (10, 100), (10, 500) discussed
245 ‘055 45 '086 in Section 2.2. For each setting, a sample of m = 30,000

because the ¢ statistic for 8, was .84/.31 ~ 2.7, just about
equal to the inclusion threshold for o5,/7; =~ 1 and ¢; = 10.
This illustrates how SSVS is set up to exclude variables whose
coefficients are “close” to O relative to this threshold. For
the other variables, only the ¢ statistic for 85—1.29/.33
~ 3.9—was larger than this threshold. The other two Prob-
lem 1 models in Table 1, which occurred less frequently,
also included X, and/or Xs but sometimes allowed X, to
stray in. This shows how SSVS is useful in identifying several
promising models rather than the single best model. This
feature is similar to the way in which stepwise methods are
used to narrow the scope of model selection.

For Problem 2, each model containing Xs occurred with
nearly the same frequency as the corresponding model with
X; replaced by X;. Furthermore, if X; and X are considered
identical (which they nearly are), then these output frequen-
cies are essentially the same as those for Problem 1. Of course
when one has strong proxies, either one will do, so that our
procedure is still identifying the more promising models.
Unfortunately, this example illustrates how introducing
proxies may dilute the focus of SSVS by increasing the num-
ber of promising models. To avoid this dilution, it may be
worthwhile to eliminate strong proxies from the data before
using SSVS. Finally, note that this example shows how mar-
ginal frequencies by themselves do not tell the whole story.
Although X is equally effective in both problems, it appears
in fewer models here because of the proxy X;.

Example 4.2. This example is meant to demonstrate the
practical potential of SSVS for data sets involving many po-
tential predictors. We constructed p = 60 predictors, X,
..., Xg0, of length n = 120. These were obtained as X;
=X} + Z, where X7, ..., X& iid ~ N;2(0, 1) indepen-
dently of Z ~ N;5(0, 1). This induced pairwise correla-
tions of about .5. The dependent variable was generated
according to the model Y = [X|, ..., X¢]B8 + ¢, where

observations of the Gibbs sequence (11) was then simulated
and tabulated. It took 31 seconds per 1,000 iterations, or
15.5 minutes total, to generate each sample using Fortran
compiled with the fast option on a Sun Sparcstation 10. Table
2 lists the five highest-frequency models and Figure 2 displays
all the frequency counts for each of the four simulated se-
quences.

Table 2 shows that under the two settings (1, 5) and (10,
100), SSVS is doing extremely well. The highest-frequency
model under both settings was the “correct” model, and the
next four most frequent models had only one variable (in
one case, two variables) “incorrectly” included or excluded.
The other two settings (1, 10) and (10, 500) did only slightly
worse, incorrectly excluding variables with small non-0 coef-
ficients. Apparently, this resulted from increasing the ¢;’s,
and thereby lowering the probabilities of inclusion.

As shown in Figure 2, the distribution of v frequencies
for each setting is extremely J-shaped, with very few models
appearing with high frequency. Furthermore, as (64,/7;, ¢;)
is varied along the four settings, fewer models are visited.
Indeed, out of 2% possible models under (1, 5), (1, 10), (10,
100), (10, 500), the total number of models visited was
25,723, 22,468, 5,071 and 1,901. Of these, 23,384, 19,390,
2,171 and 511 were visited only once. As shown in Table 2,
the highest frequencies increase dramatically along these set-
tings. It appears that as (a4,/7;, ¢;) is increased, the posterior
distribution f(v|Y) becomes more peaked. This suggests
that the statistician may be able to vary (a4,/7;, ¢;) to focus
this posterior on a small set of models. This underscores our
suggestion to vary 7; and ¢; to identify promising models.

5. REAL DATA EXAMPLES

In this section we apply SSVS to three real examples. The
first Example 5.1 illustrates the performance of SSVS on a
familiar data set. Example 5.2 illustrates how prior infor-
mation can be usefully incorporated into the hierarchical
setup that is the basis for SSVS. Example 5.3 illustrates the
performance of SSVS on a large problem.

Table 2. High Frequency Models, Example 4.2

(1, 5) (10, 100)
(1, 10) (10, 500)
False False

Freq choice Freq False choice Freq choice Freq False choice

51 — 57 16, 20, 26, 30 2457 — 2845 17, 20, 26, 30

28 3 53 17, 20, 26, 30 770 30 2109 17, 20, 22, 26, 30

26 30 53 16, 30 755 14 1407 17,19, 20, 22, 26, 30
25 14 52 30 411 16, 30 761 17,19, 20, 26, 30

21 11 49 16, 26, 30 406 3 745 16, 20, 26, 30

NOTE: False choice is false inclusion for variables 1-15, and false exclusion for variables 16-60.
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Figure 2. Model Frequencies, Example 4.2.
Example 5.1. The data for our first real example is the

familiar Hald data (Draper -and Smith 1981), which have
been used by various authors to illustrate variable selection
procedures. The data consist of » = 13 observations on a
dependent variable Y (heat evolved during a chemical re-
action) and p = 4 independent variables X, X, X3, X4 (inputs
to the reaction). Thus 24 = 16 possible models are under
consideration. (An intercept is always included.) As described
by Draper and Smith (1981), three models were favored by
conventional selection procedures. The model ¥ = f( X,
X,), yielding R? = 97.9%, was favored by all subsets regres-
sion, backward elimination, and stepwise regression; the
model ¥ = f( X, X4), yielding R? = 97.2%, was also favored
by all subsets regression; and the model ¥ = f( X}, X,, X4),
yielding R? = 98.2%, was favored by forward selection.

For the purpose of comparison, we applied SSVS to the
Hald data with the indifference prior f(v) = 34, R =1, »,
= 0, and the four automatic settings (ag,/7;, ¢;) = (1, 5), (1,
10), (10, 100), (10, 500) discussed in Section 2.2. For each
setting, a sample of m = 5,000 observations of the Gibbs
sequence [11] was then simulated and tabulated. Table 3
lists the model frequencies for all v’s that realized a frequency
of at least 2% for some sequence. Under (1, 5) and (1, 10),
SSVS puts more probability on models with few or no vari-
ables. In contrast, under (10, 100) and (10, 500), SSVS puts
more probability on models chosen by conventional pro-
cedures. Furthermore, under these latter settings, the pos-
terior distribution is much more concentrated around a
smaller number of models, just as in Example 4.2.

Example 5.2. The data for our second real example were
collected to test the hypothesis that “love” and “work™ are
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Table 3. Model Frequencies for the Hald Data, Example 5.1
Model
variables (1, 5) (1, 10) (10, 100) (10, 500)
NONE .23 44 — —

1 .26 .25 —_ —_

2 .06 .05 —_ —_

3 .06 .06 — —_

4 .08 .07 —_ —
1,2 .07 .03 60 81
1,3 .06 .03 —_ —_
1,4 .06 .03 .27 .16

1,2,3 .02 .00 .03 .01

1,2,4 .02 .00 .05 .01

1,34 .01 .00 .05 .01
NOTE: Models visited less than 2% for all settings not listed. “—"" indicates model not visited.

the important factors in determining an individual’s hap-
piness. As alternatives, the variables “money” and “sex” were
included in the study. (Here “sex” refers to sexual activity
rather than gender.) Five variables were recorded: Y = Hap-
piness, X; = Money, X, = Sex, X3 = Love, and X; = Work.
Happiness was measured on a 10-point scale, with 1 repre-
senting a suicidal state, S representing a feeling of “‘just mud-
dling along,” and 10 representing a euphoric state. Money
was measured by annual family income in thousands of dol-
lars. Sex was measured by a dummy variable taking the values
0 or 1, with 1 indicating a satisfactory level of sexual activity.
Love was measured on a 3-point scale, with 1 representing
loneliness and isolation, 2 representing a set of secure rela-
tionships, and 3 representing a deep feeling of belonging and
caring in the context of some family or community. Work
was measured on a 5-point scale, with 1 indicating that an
individual is seeking other employment, 3 indicating the job
is “OK,” and 5 indicating that the job is enjoyable. The data
were collected from the 39 individuals in an MBA class for
employed students at the University of Chicago Graduate
School of Business.

To implement the SSVS procedure in this example, it was
possible to base the choice of 7; on practical considerations.
To begin, although the data exhibit correlation among the
four explanatory variables, we were interested in each effect
while holding the other variables constant. The maximum
effect of a variable X; was then considered to be 3;A X;, where
AX; is the maximum change we would expect in X;. Letting
AY be the threshold at which the effect is unimportant, we
then set 7, = AY/3AX;, because AY/AX; would be the cor-
responding threshold for each @;. For example, because X,
is a dummy variable, AX, = 1 and 7, = AY/3.

For the purpose of robustness, we considered various
choices of 7; and ¢;. For each 7; we considered the “low”
and “high” settings, 7; = .5/3AX; and =; = 1/3AX;, cor-

Table 4. The Six Priors, Example 5.2

™ 1 2 3 4 5 6
n B/3AX,  .5/3AX;  1/3AX,  1/3AX;  1/3AX 4/10
c 4 9 4 9 4 100
R ! / ! ! o (XX)! !
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PROBABILITY

PRIOR #

Figure 3. Model Probabilities, Example 5.2. B, X3; [, X3, X4; &, X1,
X3, X4, W, X2, X3, X4, 8, X1, X2, X3, X4.

responding to the threshold choices AY = .5 and AY = 1.
For each ¢; we considered the “low” and ‘high” settings, ¢;
=4 and ¢; = 9. These choices provided substantial separation
between the two mixture components in (2) while still al-
lowing for plausible values of 3; when +v; = 1. Because we
favored no particular vy, we used the indifference prior f(7)
= 14 (An intercept was always included.) Finally, we chose
v, = 3 and A\, = 25. With these choices, the expected value
of ¢ is about 7 and the probability that ¢ is between 2.6 and
26.5 is about .98.

After centering the data to account for the intercept, we
applied SSVS to this data using the six prior choices listed
in Table 4, with f(y) = 34, v, = 3, and A, = 25. Note that
priors 1-4 vary the settings for all 7; and all ¢; between “low”
and “‘high.” Prior S takes our preferred settings for 7; and c;
and uses the g prior R oc (X’'X)~!, and prior 6 uses the
default 64 /7; = 10 with ¢; = 100.

Figure 3 displays the five high-frequency models of each
size obtained by each of the six priors. For every prior the
two most probable models selected were (3 4) and (1 3 4).
Prior 1, which had smallest 7; and ¢;, seemed to favor more
saturated models and gave more weight to (1 2 3 4) than did
the other priors. In contrast, prior 6, which used the default
setting with large ¢;, seemed to favor more parsimonious
models and was the only prior to put more weight on (3 4)
than on (1 3 4). Aside from these differences, there seemed
to be substantial agreement of model frequencies for the six
priors, suggesting reasonable robustness of SSVS with respect

PROBABILITY

PRIOR #

Figure 4. Marginal Probabilities, Example 5.2. B, X1; O, X2, B, X3;
W, X4.
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to prior specification. Figure 4 displays the marginal prob-
ability estimates for each of the four variables with the six
priors. Every prior ordered the variables in importance as
X3, X4, X, X,. Here the agreement of frequencies for the
different priors is striking.

Example 5.3. The third real data set we considered was
collected by a bank to study the selling of new accounts and
to characterize each branch office in this regard. The data
consisted of 233 observations on each of the following 16
variables: Y = the number of new accounts sold in a given
time period, X; = number of households serviced, X,
= number of people selling the new account, X; = 1 if the
branch is in Manhattan and 0 otherwise, X, = 1 if the branch
is in the boroughs and 0 otherwise, X5 = 1 if the branch is
in the suburbs and 0 otherwise, Xs; = demand deposits bal-
ance, X7 = number of demand deposit, X3 = now accounts
balance, Xy = number of now accounts, X;, = balance of
money market accounts, X;; = number of money market
accounts, X, = passbook saving balance, X3 = other time
balance, X4, = consumer loans, and X;s = shelter loans.

Table 5 is the summary output for a least squares regres-
sion on all 15 variables (including an intercept). Residual
plots supported the usual normal linear model assumptions.
In this full model, the weakest variables X;, X5, and X,
obtained p values larger than .5. Using forward selection,
the last five variables to be entered were X4, X;,, X190, X12,
and X;5. These were also the first five removed by backward
elimination, in reverse order. A minimum C, value of 12.3
and R? = 91.4% was achieved by the model that excluded
only X5 and X;,.

After centering the data to account for a constant term,
SVSS was run on this data with the indifference prior f(7)
= 115 the setting (6g,/7:, ci) = (10, 100) discussed in Section
2.2, v, =0, and the two prior covariance choices R = I and
R oc (X'X)™!. For each of these two priors, a Gibbs sequence
(11) of length m = 10,000 was simulated.

Both simulated sequences yielded J-shaped frequency dis-
tributions of v values similar to those in Figure 2. Totals of
696 and 1,278 distinct v values were visited under R = 1
and R oc (X'X) ! respectively. Of these only 19 and 14 v

Table 5. The Full Least Squares Regression, Example 5.3

Predictor Coef Stdev t-ratio P

Constant 19.62 23.22 0.84 0.399
X —0.015298 0.004949 -3.09 0.002
Xz 11.476 4.056 2.83 0.005
X3 48.22 23.74 2.03 0.043
Xa 15.38 22.87 0.67 0.502
Xs —8.40 21.62 —0.39 0.698
Xs —0.019851 0.004308 —4.61 0.000
X7 0.025384 0.009497 2.67 0.008
Xs —0.013079 0.004366 -3.00 0.003
Xo 0.54401 0.05242 10.38 0.000
X10 —0.002289 0.001568 —1.46 0.146
X1 0.09234 0.04367 2.11 0.036
Xi2 0.000976 0.002480 0.39 0.694
Xi3 0.005675 0.002203 2.58 0.011
X1a 0.36340 0.04419 8.22 0.000
Xis 0.008022 0.002572 3.12 0.002

s = 49.91 R —sq = 91.5% R — sq(adj) = 90.9%
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Table 6. High Frequency Models for (10, 100), Example 5.3
R=1 R = (XX)~'

Freq Exclusion R? P Cp Freq Exclusion R? P Cp

827 4,5 91.2 14 18.4 1452 — 91.5 16 16.0
627 2,45 90.8 13 276 782 3 91.3 15 18.1
595 3-5, 11 90.4 12 34.8 718 4,5 91.2 14 18.4
486 3-5 90.5 12 34.8 633 4 914 15 14.4
456 3,4 91.0 13 22.8 564 5 91.5 15 141
390 4,5 1 91.1 13 19.5 493 3,4 91.0 14 22.8
315 2-4 90.6 13 32.3 379 2 91.1 15 220
245 3,4, 11 90.9 13 247 346 3-5 90.5 13 34.8
209 2,4,5 11 90.6 12 29.2 249 2,4 91.1 14 21.0
209 2,4 91.1 14 21.0 193 2,5 91.1 14 20.0

values were visited more than 100 times under R = I and R
oc (X'X)~". Table 6, which lists the five highest-frequency
models appearing in each sequence, shows that many dif-
ferent models of different sizes were selected by SSVS. Fur-
thermore, every model in Table 6 is different from all the
models obtained by the stepwise procedures. The minimum
C, model did appear in the Gibbs sequences, although never
with a frequency higher than 10. Interestingly, the models
in Table 6 excluded X;, X5, or X;; but not X;q or X;,. All
of the models in Table 6 obtained R? values practically as
large as the full model in Table 5. It was also interesting that
although there was some overlap in the models selected using
R = I and using R o (X'X)™!, there was a pronounced
difference. Using R = I, which tends to lessen posterior cor-
relations, tended to select smaller models than using R
oc (X'X) !, which tends to replicate the design correlation.
Certain variables, such as X,;, were excluded more often
under R = I than under R oc (X'X)7.

Finally, this example once again illustrates how SSVS nar-
rows the scope of possible models for further consideration.
The choice of a single “best” model at this point could pro-
ceed by applying standard model selection criteria, such as
C, plots or predictive error measures, to the more manageable
selected subset. Another approach might be to average the
selected models (see Madigan and Raftery 1991).

[Received February 1991. Revised October 1992.]

REFERENCES

Casella, G., and George, E. . (1992), “Explaining the Gibbs Sampler,” The
American Statistician, 46, 167-174.

Diebolt, J., and Robert, C. (in press), “Estimation of Finite Mixture Dis-
tributions Through Bayesian Sampling, Journal of the Royal Statistical
Society, Ser. B.

Draper, N., and Smith, H. (1981), Applied Regression Analysis (2nd ed.),
New York: John Wiley.

Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M. (1990),
“Illustration of Bayesian Inference in Normal Data Models Using Gibbs
Sampling,” Journal of the American Statistical Association, 85, 972-985.

Gelfand, A. E., and Smith, A. F. M. (1990), “Sampling-Based Approaches
to Calculating Marginal Densities,” Journal of the American Statistical
Association, 85, 398-409.

Lempers, F. B. (1971), Posterior Probabilities of Alternative Linear Models,
Rotterdam: Rotterdam University Press.

Madigan, D., and Raftery, A. E., (1991), “Model Selection and Accounting
for Model Uncertainty in Graphical Models Using Occam’s Window,”
Technical Report 213, University of Washington, Dept. of Statistics.

Miller, A. J. (1990), Subset Selection in Regression, New York: Chapman
and Hall.

Mitchell, T. J., and Beauchamp, J. J. (1988), “Bayesian Variable Selection
in Linear Regression” (with discussion), Journal of the American Statistical
Association, 83, 1023-1036.

Morris, C. N., (1987), Comment on “The Calculation of Posterior Distri-
butions by Data Augmentation” by M. A. Tanner and W. H. Wong,
Journal of the American Statistical Association, 82, 542-543.

Pericchi, L. R. (1984), “An Alternative to the Standard Bayesian Procedure
for Discrimination Between Normal Linear Models,” Biometrika, 71,
575-586.

Poirier, D. J. (1985), “Bayesian Hypothesis Testing in Linear Models With
Continuously Induced Conjugate Priors Across Hypotheses,” in Bayesian
Statistics 2, eds. J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and
A. F. M. Smith, New York: Elsevier, pp. 711-722.

Smith, A. F. M., and Spiegelhalter, D. J. (1980), “Bayes Factors and Choice
Criteria for Linear Models,” Journal of the Royal Statistical Society, Ser.
B, 42, 213-220.

Soofi, E. S. (1990), “Effects of Collinearity on Information About Regression
Coefficients,” Journal of Econometrics, 43, 255-274.

Spiegelhalter, D. J., and Smith, A. F. M. (1982), “Bayes Factors for Linear
and Log-Linear Models With Vague Prior Information,” Journal of the
Royal Statistical Society, Ser. B, 44, 377-87.

Stewart, L. (1987), “Hierarchical Bayesian Analysis Using Monte Carlo In-
tegration: Computing Posterior Distributions When There are Many Pos-
sible Models,” The Statistician, 36, 211-219.

Tanner, M. A., and Wong, W. H. (1987), “The Calculation of Posterior
Distributions by Data Augmentation” (with discussion), Journal of the
American Statistical Association, 82, 528-550.

Tukey, J. W. (1977), Exploratory Data Analysis, Reading, MA: Addison-
Wesley.

Verdinelli, I., and Wasserman, L. (1991), “Bayesian Analysis of Outlier
Problems Using the Gibbs Sampler,” Statistics and Computing, 1, 105-
117.

Zellner, A. (1984), “Posterior Odds Ratios for Regression Hypotheses: Gen-
eral Considerations and Some Specific Results,” in Basic Issues in Econo-
metrics, ed. A. Zellner, Chicago: University of Chicago Press, pp. 275-
305.

—— (1986), “On Assessing Prior Distributions and Bayesian Regression
Analysis with g Prior Distributions,” in Bayesian Inference and Decision
Techniques, eds. P. Goel and A. Zellner, New York: Elsevier, pp. 233-
243.



